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We present new insights and results for the problem of a film falling down a heated
wall: (i) treatment of a mixed heat flux boundary condition on the substrate; (ii) de-
velopment of a long-wave theory for large Péclet numbers; (iii) refined treatment of the
energy equation based on a high-order Galerkin projection in terms of polynomial test
functions which satisfy all boundary conditions; (iv) time-dependent computations for
the free-surface height and interfacial temperature; (v) numerical solution of the full en-
ergy equation; (vi) demonstrate the existence of a thermal boundary layer at the front
stagnation point of a solitary pulse; (vii) development of models that prevent negative
temperatures and are in good agreement with the numerical solution of the full energy
equation.
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1. Introduction

1.1. Isothermal films

The dynamics of an isothermal film falling down a planar substrate is driven by the clas-
sical long-wave instability mode first observed in the pioneering experiments by Kapitza
& Kapitza (1949). Benney (1966) was the first to apply to this problem an expansion with
respect to the long-wave parameter ǫ. This expansion, frequently referred to as ‘long-wave
expansion’ (LWE), leads to a single equation of the evolution type for the free surface.
Later on, Pumir et al. (1983) and Nakaya (1989) constructed numerically solitary waves
of the first-order LWE and demonstrated that the solitary wave solution branches for
the speed of the waves as a function of the Reynolds number show branch multiplicity
and turning points above which solitary waves do not exist. Further, time-dependent
computations by Pumir et al. (1983) showed that LWE exhibits finite-time blow-up be-
havior when this equation is integrated in regions of the parameter space where solitary
waves do not exist. The connection between the absence of solitary wave solutions and
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finite-time blow up was recently investigated by Scheid et al. (2004). Clearly, this behav-
ior is unrealistic and marks the failure of LWE to correctly describe nonlinear waves far
from criticality – close to criticality LWE is exact as far as critical/neutral conditions
are concerned; this is not surprising as LWE is a regular perturbation expansion of the
full Navier-Stokes. A review of the developments in isothermal falling films is given by
Chang & Demekhin (2002).

Following the pioneering theoretical work by Kapitza (1948), an ad-hoc but conve-
nient simplification was employed by Shkadov (1967, 1968) who developed the integral-
boundary-layer (IBL) approximation which combines the boundary-layer approximation
of the Navier-Stokes equation assuming a self-similar parabolic velocity profile and long
waves on the interface with the Kármán-Pohlhausen averaging method in boundary-layer
theory. This procedure results in a two-equation model for the free surface and flow rate
and unlike LWE, IBL has no turning points and predicts the existence of solitary waves
for all Reynolds numbers. However, despite its success to describe nonlinear waves far
from criticality, Shkadov’s IBL approach does have some shortcomings with the princi-
pal one being an erroneous prediction of the critical Reynolds number. By combining a
gradient expansion with a weighted residual technique using polynomial test functions,
Ruyer-Quil & Manneville (2000, 2002) obtained a two-equation model having the same
structural form as Shkadov’s but recovering correctly the instability threshold.

1.2. Heated films

The dynamics of a film falling down a heated wall is driven by both the Kapitza mode
and the long-wave Marangoni mode obtained by Smith in his study of horizontal layers
heated uniformly from below (Smith 1966). The nonlinear stage of the instability for the
uniformly heated falling film was investigated by Joo et al. (1991) who utilized the LWE
to obtain an evolution equation for the film thickness. In addition to the Marangoni effect,
these authors also included evaporation effects and long-range attractive intermolecular
interactions. A review of a wide variety of fluid flow problems using LWE including
problems with Marangoni effects is given by Oron et al. (1997).

The first study to investigate the dynamics of a film falling down a uniformly heated
wall far from criticality was that of Kalliadasis et al. (2003a). Their analysis was based on
the model equations derived by Kalliadasis et al. (2003b) for a falling film heated from
below by a local heat source. These authors formulated an IBL approximation of the
equations of motion by adopting a linear test function for the temperature field to obtain
a weighted residuals approach for the energy equation yielding a three-equation model
for the free surface, flow rate and interfacial temperature. However, despite the fact that
this IBL model behaves well in the nonlinear regime, it does not predict very accurately
neutral and critical conditions and hence it suffers from the same limitations with the
Shkadov model for the isothermal film. The limitations of the model equations derived
by Kalliadasis et al. (2003a,b) were recently overcome by Ruyer-Quil et al. (2005) and
Scheid et al. (2005). In addition, these authors also took into account the second-order
dissipative effects both in the momentum and energy equations. These second-order terms
were neglected in the formulation by Kalliadasis et al. (2003a,b) while they indeed play
an important role in the dispersion of waves for larger Reynolds numbers. The procedure
followed is effectively an extension of the methodology applied in the case of isothermal
flows by Ruyer-Quil & Manneville (2000, 2002) and is based on a high-order weighted
residuals approach with polynomial expansions for both velocity and temperature fields.
Details of the theoretical developments are also given in the thesis by Scheid (2004)
which contains an extensive study of the heated falling film problem including the case
of non-uniform heating (see also Kabov (1998) and Scheid et al. (2002)).
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1.3. Outline

Here we revisit the heated falling film problem. We impose two types of wall boundary
conditions: a heat flux (HF) and a specified temperature (ST) condition. Note that
all previous studies on the heated falling film problem imposed the ST condition only.
Scheid’s thesis is the first study that introduced HF. This condition involves the heat flux
from the wall to the substrate and the heat losses from the wall to the ambient gas phase.
Hence it is a more realistic condition than the ST one. The two cases are contrasted and
we demonstrate that they are similar only when heat transport convective effects can
be neglected and for certain values of the Marangoni and Biot numbers. Further, we
employ the same first order in ǫ single-mode Galerkin representation for the transport
of momentum given by equations (5.17a) and (5.17b) in Scheid (2004) (and equations
(4.18a) and (4.18b) in Ruyer-Quil et al. (2005)). However, for the transport of heat
we develop a refined treatment of the energy equation for both HF and ST problems.
This results in an alternative system of first order in ǫ amplitude equations obtained by
introducing a new set of test functions which satisfy all boundary conditions so that our
Galerkin approach incorporates the boundary conditions within its projection. On the
other hand, the models derived in Scheid (2004) and Ruyer-Quil et al. (2005) adopted
test functions which do not satisfy all boundary conditions. The Galerkin projection
then incorporated the boundary conditions in the boundary terms resulting through
integrations by parts following the averaging of the energy equation. Moreover, unlike
the studies by Scheid (2004) and Ruyer-Quil et al. (2005) where the amplitudes in the
expansion for the temperature field are assigned certain orders with respect to ǫ, in the
projection for the temperature field presented here the order of the amplitudes is not
specified.

We demonstrate that the linear stability properties of a three-equation model (for the
free surface, flow rate and interfacial temperature) obtained by a single-mode Galerkin
projection is in good agreement with an Orr-Sommerfeld analysis of the linearized Navier-
Stokes and energy equations. We also develop an LWE approximation which is used to
ensure that the models obtained from our refined weighted residuals approach based on a
high-order Galerkin projection yield LWE with an appropriate gradient expansion, thus
confirming the validity of the models close to criticality. The LWE expansion is also used
to contrast the HF and ST problems. Note that unlike all previous LWE theories in the
area of heated thin films, e.g. Joo et al. (1991), which typically assume the Péclet number
to be O(1), our LWE equation is obtained by assuming a large Péclet number. Indeed,
the Péclet number can be much larger than the Reynolds number due to the ratio of the
momentum to the thermal diffusivity being usually much larger than unity.

We construct bifurcation diagrams for traveling solitary waves and we demonstrate
that LWE exhibits turning points and branch multiplicity or points where the solution
branches terminate [this last feature has not been observed before in isothermal falling
film problems where the solution branches always exhibit turning points]. On the other
hand, the new three-equation model based on the single-mode Galerkin projection pre-
dicts the continuing existence of solitary waves for all Reynolds numbers. Further, the
HF case shows the existence of negative-hump solitary waves in certain regions of the
parameter space, unlike ST which only yields positive-hump waves (here we are referring
to single-hump waves only). The predictions of the bifurcation diagrams are confirmed
by time-dependent computations of the single-mode Galerkin projection model for both
HF and ST [the previous studies by Kalliadasis et al. (2003a) and Scheid et al. (2005) on
heated falling films focused on the construction of stationary solitary waves only without
any time-dependent computations]. Interestingly, for the HF case the system can evolve
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Figure 1. Sketch of the profile geometry for a thin liquid film falling down an inclined heated
wall forming an angle β with the horizontal direction. hN is the Nusselt flat film thickness. The
surrounding gas phase is maintained at temperature Ta. For ST the heater maintains the wall
temperature at Tw. For HF two heat fluxes contribute to the liquid temperature gradient at
y = 0: the heat flux generated by the heater embedded in the wall, q0, and the heat losses from
the wall to the ambient gas, qloss.

into negative-hump waves never observed in isothermal films (although such permanent
solitary waves do exist they are unstable in time-dependent computations (Chang &
Demekhin 2002).

Finally, we construct numerically the solution of the full energy equation at first or-
der in ǫ which is after all the equation we are trying to model. This allows us to assess
both the new single-mode Galerkin projection model developed here and the first-order
temperature models given by equation (8.8) for HF and equation (5.17c) for ST from
Scheid (2004) (see also equation (4.18c) for ST in Ruyer-Quil et al. (2005)) [previous
studies on the problem focused more on model development than validation in the non-
linear regime]. The new model provides a substantially improved representation of the
temperature field (and hence the flow field due to the coupling through the Marangoni
effect) over the previous ones as the Reynolds number increases. The good agreement
between our model and the numerical solution of the full energy equation at first order in
ǫ persists up to a certain Reynolds number at which a recirculation zone appears in the
crest of a solitary wave. As the recirculation zone grows the model diverges from the ac-
tual solution and eventually predicts negative interfacial temperatures at some Reynolds
number. This deficiency is cured with the introduction of modified weight functions prior
to averaging. The resulting modified averaged models prevent the interfacial temperature
from going negative and are in good agreement with the numerical solution of the full
energy equation.

2. Problem definition

2.1. Governing equations

Figure 1 sketches the flow situation. The heating is provided by a heat source inside the
plate that uniformly generates heat, e.g. an electric heating device. The surrounding gas
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phase below the plate and above the liquid film is maintained at a constant temperature
Ta. The liquid has constant viscosity µ, density ρ, constant pressure heat capacity cp,
thermal diffusivity κ and thermal conductivity λ = ρcpκ, all assumed to be constant. We
also assume that the liquid is non-volatile so that evaporation effects can be neglected
while the film is sufficiently thin so that buoyancy effects can be neglected. A coordinate
system (x, y) is chosen so that x is the streamwise coordinate and y is the outward-
pointing coordinate normal to the wall. The wall is then located at y = 0 and the
interface at y = h(x, t). The governing equations are conservation of mass, Navier-Stokes
and energy equations,

∇ · u = 0, ut + (u · ∇)u = −
1

ρ
∇p+ ν∇2u+ g (2.1a, b)

Tt + (u · ∇)T = κ∇2T, (2.1c)

where u, p and T are the velocity, pressure and temperature of the liquid, respectively.
g is the gravitational acceleration and ν = µ/ρ is the kinematic viscosity of the liquid.

On the wall, we have the usual no-slip boundary condition

u = 0 on y = 0 (2.2a)

while for the temperature boundary condition we shall on two types of boundary condi-
tions, namely, HF and ST as discussed in § 1. For HF the thermal boundary condition is
(Scheid 2004)

HF: λ∇T · j = −q0 + αw(T − Ta) on y = 0 (2.2b)

where j is the unit vector normal to the wall and pointing into the liquid and αw is the
heat transfer coefficient of the wall-air interface. This mixed/Robin boundary condition
implies that both the flux supplied by the solid substrate to the liquid q0 and the heat
losses αw(T − Ta) to the ambient gas phase contribute to the temperature gradient at
y = 0. On the other hand for ST the thermal boundary condition is simply a Dirichlet
one

ST: T = Tw on y = 0 (2.2c)

and the heater is assumed to maintain the wall temperature at a constant value Tw. We
note that since HF involves the heat flux from the wall to the substrate and the heat
losses from the wall to the ambient gas phase it is a more realistic condition than the ST
one. As a matter of fact, experimental studies with locally heated falling films (Kabov
1998; Kabov et al. 2000) indicate that in practice it is almost impossible to maintain a
constant temperature on the wall, instead it is a lot easier to control the heat flux (heat
production). As a result these studies suggest that most likely heated film problems would
require a mixed boundary condition. HF also allows for a non-uniformity of the heat flux
along the plate due to the non-uniformity of the plate temperature which in turn is due
to the dependence of the plate temperature on the flow characteristics. Further we note
that all previous studies on heated films imposed the ST condition only.

On the interface we have the kinematic boundary condition along with the normal and
tangential stress balances

ht + u · ∇(h− y) = 0, pa + τ · n · n = −σ∇ · n, τ · n · t = ∇σ · t (2.2d)

where n and t are unit vectors, normal (outward-pointing) and tangential to the interface,
respectively and τ = −pI + 2µe is the stress tensor with e the rate-of-strain tensor given
by eij = (1/2)(∂ui/∂xj + ∂uj/∂xi). pa is the pressure of the ambient gas phase and σ is
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the surface tension. The thermal boundary condition on the free surface is:

λ∇T · n = −αg(T − Ta) on y = h (2.2e)

where αg is the heat transfer coefficient between the liquid and air. Finally, the thermo-
capillary effect is modeled using a linear approximation for the surface tension

σ = σa − γ(T − Ta) (2.3)

where σa is the surface tension at the temperature Ta and γ > 0 for typical liquids.

2.2. Scalings and non-dimensionalization

System (2.1)-(2.3) has a trivial solution corresponding to the plane-parallel base state,
the Nusselt flat film solution:

h = hN, p = pa + ρ(hN − y)g cosβ, u =
g sinβ

2ν
(2hNy − y2), v = 0 , (2.4a)

HF: T = Ta + βT [λ+ αg(hN − y)] , ST: T = Ta + β̂T [λ+ αg(hN − y)] (2.4b)

where βT = q0/[λ(αw +αg) +αwαghN] and β̂T = (Tw −Ta)/(λ+αghN). Using both the
dimensional Nusselt film thickness, hN , and the viscous-gravity length and time scales,

l0 =
ν2/3

(g sinβ)1/3
, t0 =

ν1/3

(g sinβ)2/3

we employ the non-dimensionalization

(x̄, ȳ, h̄) =
(x, y, h)

hN
, t̄ =

t
t0l0
hN

, (ū, v̄) =
(u, v)

h2

N

t0l0

, p̄ =
p− pa

ρ l0hN

t2
0

HF: T̄ =
T − Ta

q0hN

λ

, ST: T̄ =
T − Ta

Tw − Ta
.

The temperature scales for HF and ST, q0hN/λ and Tw − Ta, respectively, are natural
control parameters in experiments.

In terms of these non-dimensional variables, the equations of motion and energy become

ux + vy = 0 (2.5a)

3Re(ut + uux + vuy) = −px + uxx + uyy + 1 (2.5b)

3Re(vt + uvx + vvy) = −py + vxx + vyy − cotβ (2.5c)

3Pe(Tt + uTx + vTy) = Txx + Tyy (2.5d)

where bars have been dropped for convenience. The wall boundary conditions become

u = v = 0, HF: Ty = −1 +BwT, ST: T = 1 (2.6a)

and the free-surface boundary conditions are written as

ht + uhx − v = 0 (2.6b)

p+ (We−MT )N−
3

2hxx = 2N−1(vy − hx(uy + vx) + h2
xux) (2.6c)

uy +M(Tx + hxTy)N
1

2 = −vx − 2hx(vy − ux) + h2
x(uy + vx) (2.6d)

Ty +BTN
1

2 = hxTx (2.6e)

where N = 1 + h2
x. We now introduce the Kapitza, Marangoni, wall Biot and surface
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Biot numbers for HF, respectively,

Ka =
σa

ρgl20 sinβ
, Ma =

γq0
λρgl0 sinβ

, Biw =
αwl0
λ

, Bi =
αgl0
λ

,

and the Marangoni and surface Biot numbers for ST, respectively,

M̂a =
γ(Tw − Ta)

ρgl20 sinβ
, B̂i = Bi

where hats throughout this study are used to denote parameters associated with the ST
problem. Further, we introduce the dimensionless Nusselt flat film thickness, h̄N = hN/l0.
The dimensionless groups in (2.5-2.6) can then be written as

Re =
h̄3

N

3
, P e = RePr , We =

Ka

h̄2
N

, M =
Ma

h̄N
, Bw = Biwh̄N , B = Bih̄N (2.7)

corresponding to the Reynolds, Péclet, Weber and the modified groups, Marangoni, wall
Biot and surface Biot numbers for HF, respectively, and

M̂ =
M̂a

h̄2
N

, B̂ = B̂ih̄N

corresponding to the modified groups, Marangoni and surface Biot numbers for ST,
respectively. Pr = ν/κ is the Prandtl number.

The set of dimensionless groups in (2.7) isolates the dependence on the dimensionless
Nusselt flat film thickness h̄N and the physical properties of the problem. Hence, the
system of equations (2.5-2.6) is governed by the inclination angle β, h̄N or equivalently
the Reynolds number and the five dimensionless parameters, Ka, Ma, Pr, Biw and Bi
for HF and the four dimensionless groups, Ka, M̂a, Pr and B̂i for ST. As a consequence,
a complete investigation over the entire parameter space would be impractical. How-
ever, for a given liquid-gas system, heating conditions and geometry, the parameters β,
Ka,Ma, Pr,Biw, Bi, M̂a and B̂i are fixed and the only free parameter is the Reynolds
number which is a flow control parameter so that the heated falling film problem is a
one-parameter system only. On the other hand, if we only fix the liquid and inclination
angle β, the Prandtl and Kapitza numbers are fixed, thus reducing the number of relevant
parameters by three, which is a substantial simplification. As an example assuming the
liquid phase to be water at 25◦C and the plane to be vertical, β = π/2, Ka ≃ 2850 and
Pr ≃ 7. The HF problem then has four free parameters, Re, Ma, Biw and Bi while the
ST problem has three free parameters, Re, M̂a and B̂i. The values for the parameters,
Biw, Bi,Ma, B̂i and M̂a will be discussed in § 4.

2.3. On the two wall thermal conditions: retrieving ST from HF

We close this section with a comment on the wall thermal boundary condition for HF in
(2.6a). The temperature field has been non-dimensionalized with q0hN/λ. An alternative
scaling could have been T ∗ = (T − Ta)/(q0/αw) that would convert (2.2b) to

T ∗

y = Bw(T ∗ − 1). (2.8)

In the limit Bw → ∞, (2.8) yields T ∗ → 1 thus retrieving the boundary condition for ST
(2.6a). But (2.6a) is obtained by scaling the temperature field with Tw −Ta. This scaling
must be related to that used to obtain (2.8) as in the limit Bw → ∞, ST and HF are
one and the same problem. Converting now T ∗ = 1 to dimensional variables and setting
T = Tw yields q0 = αw(Tw − Ta): q0 is now the heat transported between the liquid and
the gas. This is to be expected as in the limit Bw → ∞ the wall is effectively decoupled
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from the problem and we are concerned with the heat transfer between the liquid and
the gas only.

Taking the limit Bw → ∞ in (2.6a) yields T → 0. It would then appear that we
cannot retrieve the ST problem from (2.6a) in this limit. Note, however, that (2.6a) can
be converted to (2.8) with the transformation

T =
1

Bw
T ∗. (2.9)

Thus in the limit Bw → ∞, T ∗ → 1 becomes T → 0 and hence, the alternative form of
the wall thermal boundary condition in (2.8) is equivalent to (2.6). The ‘advantage’ of
(2.8) is that it makes the recovery of ST from HF in the limit Bw → ∞ transparent. On
the other hand, the ‘advantage’ of (2.6a) is that it makes the limit Bw → 0 more obvious
as in this limit we retrieve the case of a specified heat flux boundary condition.

3. Linear Stability Analysis

3.1. The Orr-Sommerfeld eigenvalue problem

We now examine the linear stability of the Nusselt flat film solution (2.4). For ST, this
problem was first formulated and solved by Goussis & Kelly (1991) and more recently
was reconsidered in detail by Scheid et al. (2005). The Nusselt solution can be written
as

h = 1 , v = 0 , u = y −
1

2
y2 , p = (1 − y) cotβ , T = [1 +B(1 − y)]F

where for ST F → F̂ with

HF: F = (Bw +B +BwB)−1 , ST: F̂ = (1 + B̂)−1.

Normal form disturbances are introduced as

[h, u, v, p, T ] = [h, u(y), v(y), p(y), T (y)] + χeik(x−ct)[H,ψy(y),−ikψ(y), π(y), τ(y)]

where k and c are the wavenumber and complex phase velocity of the infinitesimal pertur-
bations, respectively. The disturbances are substituted into (2.5) and (2.6) which are then
linearised in χ. The pressure field is eliminated from the problem via the two momen-
tum equations and the normal stress condition to yield the Orr-Sommerfeld eigenvalue
problem

(D2 − k2)2ψ = 3ikRe
[

ψ + (u− c) (D2 − k2)ψ
]

(3.1a)

(D2 − k2)τ = 3ikPe
[

BFψ + (u− c) τ
]

, (3.1b)

subject to the wall boundary conditions

ψ(0) = Dψ(0) = 0, HF: Dτ(0) = Bwτ(0), ST: τ(0) = 0 (3.2a)

and the interfacial boundary conditions
[

D2 − 3k2 + 3ikRe

(

c−
1

2

)]

Dψ(1) = ik[cotβ + k2(We−MF )]H (3.2b)

(D2 + k2)ψ(1) = H + ik
M

B
Dτ(1) (3.2c)

Dτ(1) = B[BFH − τ(1)] with H =
ψ(1)

c− 1/2
, (3.2d)

where D ≡ d/dy. For ST (M,F ,B) → (M̂, F̂ , B̂).
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3.2. Small wavenumber expansion

Although a full solution to equations (3.1) and (3.2) can only be obtained numerically,
an analytical solution can be obtained for k → 0. As equations (3.1) and (3.2) are linear
in τ and ψ and only odd powers of k have an imaginary coefficient, it is appropriate to
seek a solution in the form

[ψ, τ, c] =
i

k
[ψ−1, τ−1, c−1] + [ψ0, τ0, c0] + ik[ψ1, τ1, c1] + [O(k2),O(k2),O(k2)].

Substituting these expansions into equations (3.1) and (3.2) and expanding in powers of
k gives a sequential solution of the eigenvalue problem. The eigenvalue c is determined
from the tangential stress balance (3.2c) where the Marangoni effect is predominant. The
only root of the dispersion relation that can become unstable has a c for HF given by

c−1 = 0, c0 = 1, c1 =
2

5
Re−

1

3
cotβ +

1

2
MBwBF

2
,

c2 = −1−
10

7
Rec1+

Re

560
MBwBF

2
+
Pe

80
MBF

3
[60B+(35B−20)Bw+(7B−15)B2

w] (3.4a)

and for ST given by

ĉ−1 = 0, ĉ0 = 1, ĉ1 =
2

5
Re−

1

3
cotβ +

1

2
M̂B̂F̂

2

,

ĉ2 = −1 −
10

7
Reĉ1 +

Re

560
M̂B̂F̂

2

+
Pe

80
M̂B̂F̂

3

(7B̂ − 15). (3.4b)

There is also an infinite number of stable eigenvalues whose leading order terms in the
absence of the Marangoni effect assume the simple form −4in2π2/(3Rek) where n is an
integer. These are the shear modes associated with the semi-parabolic Nusselt parabolic
(see e.g. Chang & Demekhin (2002)).

3.3. Critical conditions

The onset of the instability occurs at c1 = 0 which yields the critical conditions

HF: Rec =
5

6
cotβ −

5

4
MBwBF

2
(3.5a)

ST: Rec =
5

6
cotβ −

5

4
M̂B̂F̂

2

(3.5b)

for the critical Reynolds number Rec above which the flow looses stability. These condi-
tions establish that for M, M̂ > 0, the Marangoni effect is destabilizing as Rec decreases
with increasing M, M̂ . The situation is reversed when M, M̂ < 0. Finally, note that for
M = M̂ = 0, the above expressions reduce to the well-known critical condition for a
free-falling film, Rec = (5/6) cotβ (Benjamin 1957; Yih 1963). Note that if the wall is
perfectly insulated from the air, i.e. Bw = 0 in which case we have a specified heat flux
condition, Rec = (5/6) cotβ and the Marangoni effect does not influence the instability
onset. We shall return to this point in the next section.

4. Long-wave theory for large Péclet numbers

4.1. Derivation of free-surface evolution equations: LWE-HF and LWE-ST models

By introducing a formal parameter ǫ representing a typical slope of the film, we can
perform a gradient expansion ∂x,t ∼ ǫ ≪ 1 as initially performed by Benney (1966) for
the isothermal case. A classical Benney expansion assumes all parameters are of O(1),
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with the exception of the Weber number which is taken to be much larger. The Reynolds
number, Marangoni number and wall/free-surface Biot numbers are then assumed of
O(1). The Weber number is assumed to be O(ǫ−2), to bring the dominant surface tension
effects in at O(ǫ). These stabilizing terms prevent the waves from forming shocks and
from breaking thus satisfying the long-wave approximation. With regards to the Péclet
number, all previous LWE theories in the area of heated thin films, e.g. Joo et al. (1991)
and Oron et al. (1997), have assumed the Péclet number to be O(1). As a consequence, the
convective heat transport effects only enter the velocity field at O(ǫ2) and temperature
field at O(ǫ), but these higher order corrections are rather lengthy leading in turn to
lengthy evolution equations for the free surface.

In practice, however, the Péclet number can be much larger than the Reynolds number
due to the ratio of the momentum and thermal diffusivities being much larger than unity
– note that for water Pr = 7. We then expect that convection at large Péclet numbers can
lead to a downstream convective distortion of the free-surface temperature distribution
obtained by assuming an O(1) Péclet number. As a result the transport of heat by the
flow becomes important and can significantly modify the interfacial temperature and
consequently the Marangoni effect on the fluid flow. Hence we assume Pe ∼ O(ǫ−n) with
0 < n < 1 so that the convective heat transport effects are included at a low relevant
order. If Pe = O(1) then for the level of truncation employed here the convective heat
transport effects would be neglected and as noted earlier one would have to go up to
O(ǫ2) and O(ǫ) for the velocity and temperature fields, respectively.

We then carry out an expansion for the velocity up to O(ǫ2−n) and we neglect terms
of O(ǫ2) and higher. This level of truncation allows the derivation of a relatively simple
evolution equation for the local film thickness. The pressure and temperature are both
expanded up to O(ǫ1−n) and hence terms of O(ǫ) and higher are omitted from these
expansions. At this level of truncation, the solutions for the temperature field are given
by equation (A 1) in Appendix A. The velocity components can be conveniently expressed
in the form u = ψy and v = −ψx where the streamfunction ψ is given by equation (A 2)
in Appendix A. The free-surface evolution equation can then be easily obtained from the
kinematic boundary condition in (2.6b):

HF: ht + h2hx +

(

2

5
Reh6hx −

1

3
h3hx cotβ +

1

2
MBwBF

2h2hx +
1

3
Weh3hxxx

)

x

−
Pe

80
MB

[

h2
(

Gh3hx

)

x

]

x
= 0. (4.1)

with the functions F andG being given in Appendix A. The equivalent evolution equation
for the ST problem is obtained with (G,MBwBF

2,MB) → (Ĝ, M̂B̂F̂ 2, M̂B̂).
A linear stability analysis of the trivial solution h = 1 of (4.1) and the equivalent

evolution equation for ST gives the same critical conditions as (3.5) obtained from the
Orr-Sommerfeld eigenvalue problem of the full Navier-Stokes and energy equation. This
is to be expected as LWE is exact regarding critical/neutral conditions as pointed out
in § 1.1. However, LWE being a single equation predicts only the mode that becomes
unstable and fails to recover the stable modes obtained with Orr-Sommerfeld, a conse-
quence of the fact that in LWE these modes are slaved to h (these modes have their own
intrinsic dynamics and can be destabilized for very large Re).

4.1.1. Physical consequences of vanishing wall/free-surface Biot numbers

When Bw = 0 the fifth term in (4.1) vanishes and the Marangoni effect no longer influ-
ences the instability onset. This means that for a specified heat flux boundary condition
or equivalently a plate that is perfectly insulated from the gas phase below, the long-
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wave thermocapillary instability is suppressed. In this case, the interfacial temperature
distribution is T |y=h = B−1 +(3/2)PeB−1h3hx which has two contributions: B−1 due to
heat conduction across the film and (3/2)PeB−1h3hx due to convective heat transport.
The first term is independent of h and as a result thermocapillarity does not affect the
instability as variations of h do not induce perturbations on the interfacial temperature
distribution through heat conduction. The second term of Ty=h due to heat convection
does depend on h and controls the dispersion of the waves through the last term in (4.1)
(via the functionals G, Ĝ). Hence, enabling heat losses at the wall through the mixed
boundary condition (2.6a) is the only way to enable the Marangoni instability (unless
the wall supplies a non-uniform heat flux, e.g. Scheid et al. (2002)).

On the other hand, for the ST problem the interfacial temperature distribution is
T |y=h = (1 + B̂h)−1 + (1/40)PeB̂Ĝh3hx. The first term arises from heat conduction and
depends on h so that the Marangoni forces in this case always influence the instability
onset, as long as B̂ 6= 0. However, if B̂ = 0, i.e. the interface is a poor heat conductor
perfectly insulated from the surrounding gas, the Marangoni effect does not influence the
system. In this case T = 1 from (A 1b) and the temperature is everywhere uniform and
equal to the wall temperature so that there is no instability due to the thermal effects
or influence on the dispersion of the waves; the momentum and heat transport problems
are decoupled in this limit.

4.2. Rescaling the LWE equations

For convenience let us now rescale the evolution equations using the scalings introduced
by Shkadov (1977). This author introduced a length scale in the streamwise direction
corresponding to the balance of the pressure gradient σahxxx due to surface tension and
the gravitational acceleration ρg sinβ. This length scale, say lS , corresponds effectively
to the characteristic length of the steep front of the waves. Note that lS should be much
larger than the film thickness hN in order to sustain the long-wave assumption. Simple
algebra then shows that lS/hN = We1/3 which is a large ratio as long as the Weber
number is sufficiently large. The rescaled space and time coordinates are then defined as
x = We1/3X and t = We1/3Θ to yield

HF: hΘ + h2hX +

(

A(h)hX + B(h)h2
X + C(h)hXX +

1

3
h3hXXX

)

X

= 0 (4.2)

where

A(h) =
2δ

15
h6 −

ζ

3
h3 +

M

2
BwBF

2h2, B(h) = h2 ∂

∂h

(

C(h)

h2

)

, C(h) = −
Prδ

240
MBGh5.

For ST, Â is obtained from A with MBwBF
2 → M̂B̂F̂ 2 and Ĉ is obtained from Ĉ with

MBG→ M̂B̂Ĝ. The parameters

δ = 3Re/We1/3, ζ = cotβ/We1/3, M = M/We1/3 and M̂ = M̂/We1/3

are reduced Reynolds number, reduced slope and reduced Marangoni numbers.

In what follows, the evolution equation (4.2) will be referred to as LWE-HF and the
corresponding equation for ST as LWE-ST. The LWE models are developed to verify
the behavior of the weighted residuals models obtained in the following sections in the
region where LWE is valid, i.e. close to criticality. It is exactly because of the presence of
convective heat transport terms in the weighted residuals models to be developed, that
we have developed a long-wave theory to include these terms.



12 P.M.J. Trevelyan, B. Scheid, C. Ruyer-Quil, S. Kalliadasis

4.3. Comparing HF and ST

4.3.1. Conditions under which HF and ST are identical

Despite the different wall boundary conditions, the HF and ST problems yield similar
Marangoni terms in their respective long-wave evolution equations. As discussed ear-
lier, the leading-order Marangoni effects arise via heat conduction and the higher-order
Marangoni effects via heat convection. By comparing equation (4.1) for the HF problem
to its counterpart for the ST problem, it is clear that the leading-order Marangoni terms
in these two equations, also responsible for the thermocapillary instability, are identical
when MBwBF

2 = M̂B̂F̂ 2. This relationship can be made independent of h when the
following two conditions are satisfied:

B̂ =
BwB

Bw +B
, M̂ =

M

Bw +B
.

By eliminating the film parameter h̄N, the above conditions can be written as

B̂i =
BiwBi

Biw +Bi
, M̂a =

Ma

Biw +Bi
. (4.3)

In this case, the critical Reynolds numbers given in (3.5a) and (3.5b) become identical.
This shows that the Marangoni effects associated with the HF and ST problems are
identical at least in the long-wave limit and provided that the convective effects can be
neglected, i.e. small Pe. Away from the small Pe limit, the criticality conditions are the
same but the phase velocities of the infinitesimal disturbances are different – recall that
the convective heat transport effects influence the dispersion of the waves. The two cases
will also be different in the nonlinear stage of the instability.

4.3.2. On the type of small amplitude waves

The LWE equation obtained by Trevelyan & Kalliadasis (2004a) in their study of the
dynamics of a reactive falling film is the same to that in (4.2) but with A, B and C
different polynomial functions of h. Hence, the results of the Trevelyan & Kalliadasis
(2004a) study can be easily extended to (4.2), and for that matter to any evolution
equation of the type given in (4.2) where A, B and C some polynomial functions of h.
In particular, as these authors demonstrated, for evolution equations of the type given
in (4.2) we can have both positive and negative stationary solitary wave solutions at the
weakly nonlinear stage, but one of them is unstable in time-dependent computations.
More specifically, when C is sufficiently large and positive (the bar denotes evaluation of
the function C at h = 1), time-dependent computations show that the system evolves
into a train of positive-hump solitary waves. Such waves travel with a speed faster than
the linear wavespeed and their largest free-surface deformation is away from the wall.
On the other hand, when C is sufficiently large and negative, the system evolves into a
train of negative-hump waves which travel with speed smaller to the linear wavespeed
and with the largest free-surface deformation towards the wall. We note that although
C determines the type of the waves (positive or negative) it is the full term Chxxx that
governs the dispersion of small amplitude waves.

The sign of C is opposite to that of the convective functions G and Ĝ. In the limit
of very thin films, i.e. h̄N → 0, the signs of the convective functions G in Appendix A

determine that for ST Ĉ > 0, whilst for HF C is only positive when Biw/Bi > 3. Thus,
in the ST case we always have positive-hump solitary waves, whilst in the HF case we
can have either positive- or negative-hump solitary waves. We note that in the limit of
zero h̄N the Reynolds number tends to zero and the critical Reynolds number tends to
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minus infinity which is of course unphysical and implies a zero critical Reynolds number.
Nevertheless, we refrain from using the expression ‘close to criticality’ in this limit as in
general it implies small amplitude waves. Obviously, close to criticality, i.e. for a finite
value of Rec, the dispersive effects of the (small amplitude) waves in LWE are controlled
by Chxxx.

4.3.3. Choosing parameter values to contrast HF and ST

In order to contrast now the ST and HF problems we shall apply both conditions in
(4.3). The first condition in equation (4.3) requires that both Bi and Biw are greater than
B̂i. It is realistic to expect poor heat transfer characteristics at the liquid-gas interface
and so physically the parameters Bi and B̂i should be small. For the surface Biot number
we take B̂i = 1

10 for ST throughout this study. By rearranging now the conditions in

(4.3) we obtain Bi = BiwB̂i/(Biw − B̂i) and Ma = M̂aBiw
2/(Biw − B̂i). We then consider

two sets of parameter values for HF, namely,

[Biw, Bi,Ma] =

[

1

5
,
1

5
,
2

5
M̂a

]

and [Biw, Bi,Ma] =

[

3

5
,

3

25
,
18

25
M̂a

]

.

For the first set of parameters Biw/Bi = 1 whilst for the second set Biw/Bi = 5, the two
ratios being equidistant from 3. The first set yields C < 0 for small h̄N whilst the second
set yields C > 0 for small h̄N and we expect that the second set will yield qualitative
agreement (at least for small Re) to the ST problem which always has Ĉ > 0 for small
h̄N.

The only free parameters then are M̂a and Re – see also our discussion in § 2.2.

5. Weighted residuals approach

5.1. The momentum equation

The starting point of the weighted residuals approach is to assume long waves in the
streamwise direction. For consistency with LWE, we shall also neglect the second order
diffusive terms uxx and Txx of the Navier-Stokes and energy equations. Part of the
analysis presented in this section parallels the works by Kalliadasis et al. (2003a,b) and
the reader is referred to these studies for further details. The second order terms can be
included with the methodology developed by Ruyer-Quil et al. (2005).

To leading order, the y-component of the equation of motion (2.5c) and normal stress
balance (2.6c) are py = − cotβ and p|y=h = −Wehxx. Hence, the pressure distribution
is given by p = (h − y) cotβ −Wehxx which when substituted into the x-component of
the momentum equation (2.5b) and neglecting terms of O(ǫ2) and higher yields

uyy + 1 = hx cotβ −Wehxxx + 3Re(ut + uux + vuy). (5.1a)

The y-component of the velocity can be eliminated by using the continuity equation (2.5a)
along with the no slip boundary condition to obtain v = −

∫ y

0
uxdy

′. The u velocity must
satisfy the no-slip boundary condition and the leading-order tangential stress balance on
the interface from (2.6d),

u = 0 on y = 0 and uy = −Mθx on y = h (5.1b)

where terms of O(ǫ2) and higher have been neglected from the tangential stress balance
and θ(x, t) is the interfacial temperature, i.e. θ ≡ T |y=h and θx ≡ (Tx + hxTy)|y=h. The
above system is coupled with the energy equation and thermal boundary conditions,
however, we can examine the flow field by assuming that the function θ is known. The
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system is then closed via the kinematic boundary condition in (2.6), which by integrating
the continuity equation in (2.5) across the film can be written as

ht + qx = 0 (5.1c)

where q =
∫ h

0
u dy is the flow rate. In the absence of the Marangoni term Mθx appearing

in the stress balance at the free surface, equations (5.1) are the so-called ‘boundary-layer
equations’.

Following Kalliadasis et al. (2003a,b) we assume the following velocity profile,

u = 3
q

h

(

η −
1

2
η2

)

+Mθxh

(

1

2
η −

3

4
η2

)

≡ u(0) +Mθxh

(

1

2
η −

3

4
η2

)

, (5.2)

where η = y/h(x, t) is a reduced normal coordinate. u(0) is the test function that contains
q for which an equation is sought that would provide a closure for the weighted resid-
uals approach (it is identical to the test function introduced by Shkadov (1967, 1968)
for isothermal flows). The second function is chosen so that the profile in (5.2) satis-
fies all boundary conditions (in fact its the simplest possible profile that does so). The
introduction of this profile into (5.1a) yields the following residual at O(ǫ):

Ru = 3Re(u
(0)
t + u(0)u(0)

x + v(0)u(0)
y ) − uyy − 1 + hx cotβ −Wehxxx (5.3)

where v(0) = −
∫ y

0
u

(0)
x dy′. Indeed, the Marangoni terms in (5.2) are of O(ǫM) so that

they only contribute to the viscous diffusion term ∂2/∂y2 and are neglected from the
inertial terms which are of O(ǫRe).

For the isothermal falling film problem, Ruyer-Quil & Manneville (2000, 2002) showed
that a Galerkin projection for the velocity field with just one test function, the profile
assumed by Shkadov (1967, 1968), and with a weight function equal to the test function
itself fully corrects the critical Reynolds number obtained from the Shkadov IBL approx-
imation. We shall demonstrate that this is also the case in the presence of Marangoni
effects when the weight function is taken as the test function for the velocity, namely
η − 1

2η
2. The momentum residual is then minimized from 〈η − 1

2η
2, Ru〉 = 0 – the inner

product is defined as 〈f, g〉 =
∫ 1

0
fgdη for any two functions f and g with appropriate

boundary conditions – which yields the averaged momentum equation

18

5
Re

(

qt +
17

7

q

h
qx −

9

7

q2

h2
hx

)

+
3q

h2
= h+Wehhxxx − hhx cotβ −

3

2
Mθx, (5.4)

used in the remainder of the study. Note that equations (5.1c) and (5.4) correspond to
equations (5.17a) and (5.17b) in Scheid (2004) (and equations (4.18a) and (4.18b) in
Ruyer-Quil et al. (2005)).

Ruyer-Quil & Manneville (2000, 2002) also developed high-order IBL models using
refined polynomial expansions for the velocity field (corresponding to corrections of the
Shkadov parabolic self-similar profile) and high-order weighted residuals techniques. Here
we leave the momentum equation as simple as possible and we aim to improve the
treatment of the energy equation.

5.2. Simple weighted residuals for the energy equation: the SHF and SST models

5.2.1. Derivation of the models

The boundary conditions for the temperature field are the wall conditions in (2.6a)
and the leading-order interfacial condition from (2.6e)

Ty = −BT on y = h, (5.5)
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where terms of O(ǫ2) and higher have been neglected. Like with the averaging of the
momentum equation, the first step in modeling the energy equation is the introduction
of a test function for the temperature field. As a first approximation we choose a linear
profile which satisfies the wall boundary condition in (2.6a) along with T |η=1 = θ:

HF: T = θ +
1 −Bwθ

1 +Bwh
h(1 − η) , ST: T = 1 + (θ − 1)η. (5.6)

Hence, the assumption here is that the linear temperature profile obtained for a flat
film persists even when the interface is no longer flat. Note that θx occurs explicitly
in the momentum equation (5.4) and so it is convenient to explicitly include θ in the
temperature fields.

By analogy now with our analysis for the momentum equation, the introduction of the
above test functions for the temperature fields into (2.5d) yields the following residual
at O(ǫ):

RT = 3Pe(Tt + u(0)Tx + v(0)Ty) − Tyy (5.7)

where the terms of O(ǫM) of u and v are neglected from the heat transport convective
terms which are of O(ǫPe). The energy residual can then be minimized from 〈wT , RT 〉 = 0
where wT is an appropriately chosen weight function.

We note that although the temperature distributions in (5.6) satisfy their respective
wall boundary conditions in (2.6a), they do not satisfy the leading-order interfacial condi-
tion in (5.5), unlike the velocity profile in (5.2) which satisfies all boundary conditions. It
is in fact impossible for a linear profile to satisfy (5.5) and 〈wT , RT 〉 = 0, however, as was
pointed out by Kalliadasis et al. (2003a) by choosing the weight function appropriately,
the boundary terms resulting from integrations by parts involve either Tη on η = 1 or T
on η = 0 and thus the interfacial boundary condition can be included in the boundary
terms resulting from the integrations by parts. Hence, although the test function does
not satisfy all boundary conditions, the averaged energy equation does and the flat film
solution can still be retained in our averaging formulation.

For HF we take wT ≡ 1 which gives

0 =
2 +Bwh

2
θt +

8 + 5Bwh

8h
qθx −

(1 −Bwθ)

8(1 +Bwh)

[

(5 +Bwh)qx − 3
qhx

h

]

+
θF−1 − 1

3Peh
. (5.8a)

Equations (5.4) and (5.8a) along with the kinematic boundary condition in (5.1c) will
be referred to hereafter as the SHF model – a simple heat flux model. For ST we take
wT ≡ y which gives

0 = θt +
27q

20h
θx +

7qx(θ − 1)

40h
+

1

Peh2
(θF̂−1 − 1) (5.8b)

Equations (5.4) and (5.8b) along with the kinematic boundary condition in (5.1c) will be
referred to hereafter as the SST model – a simple specified temperature model. Equations
(5.8a) and (5.8b) correspond to equations (8.8) and (5.17c) in Scheid (2004). Equation
(5.8b) also corresponds to equation (4.18c) in Ruyer-Quil et al. (2005).

For consistency the SHF and SST models are both rescaled in the same way as the
LWE-HF and LWE-ST, i.e. x = We1/3X and t = We1/3Θ. Finally, we note that although
the SST model essentially uses the test function as the weight function, we refrain from
calling this model a ‘Galerkin approach’. Indeed with a linear test function Tyy ≡ 0
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and as pointed out earlier SST satisfies the boundary conditions through integrations by
parts.

5.2.2. Linear stability of flat film solution for the SHF and SST models

By construction, the SHF and SST models satisfy their appropriate flat film solutions,
namely

h = 1, q =
1

3
, HF: θ = F , ST: θ = F̂ .

We consider the stability of these solutions with respect to infinitesimal perturbations
in the form of normal modes ∼ eik(X−cΘ) where k and c are the wavenumber and com-
plex phase velocity of the perturbations, respectively. Substituting these modes into the
SHF/SST models linearized about their flat film solutions gives the dispersion relation
for ω as a function of k with three roots for c.

To obtain the critical condition for the onset of instability we consider k ≪ 1 and
expand the phase velocity as c ∼ (i/k)c-1 + c0 + ikc1 + k2c2 +O(k3) (see also § 3.2). Two
of the roots have c-1 < 0 and the corresponding modes are stable (note ωR = ℜ(−ikc) =
c-1 + k2c1 + O(k4) for small k). The third root can have a positive growth rate. For the
SHF model the first few orders of the wavespeed for this mode are given by,

c-1 = 0, c0 = 1, c1 =
2δ

15
−
ζ

3
+

1

2
MBwBF

2

c2 =

(

B

4
−
Bw

12
+
BwB

16

)

(1 +Bw)PrδMBF
3
−

10

21
δc1. (5.9a)

For the SST model we also have two roots with ĉ-1 < 0. The first few orders of the
wavespeed of the third mode that can become unstable are given by

ĉ-1 = 0 , ĉ0 = 1 , ĉ1 =
2δ

15
−
ζ

3
+

1

2
M̂B̂F̂

2

ĉ2 = (7B̂ − 15)
Prδ

240
M̂B̂F̂

3

−
10

21
δĉ1. (5.9b)

The onset of the instability occurs at c1 = 0 for SHF and ĉ1 = 0 for SST which yields
the same critical Reynods number with LHE-HF and LWE-ST which in turn is the same
to that predicted from the Orr-Sommerfeld analysis – see (3.5). Regarding the linear
wavespeed, the Orr-Sommerfeld analysis in § 3.2 (with the wavenumber k scaled with
1/We1/3), LWE and SHF/SST all give the same values for c0, c1, ĉ0 and ĉ1 but not for
c2 and ĉ2; agreement for c2 and ĉ2 would require taking into account for both LWE and
SHF/SST the second order dissipative terms which have been neglected here. Note that
unlike Orr-Sommerfeld, for the weighted residuals models we have a finite number of
modes due to their polynomial dispersion relation as a result of projection of the original
equations onto a finite number of test functions (clearly, increasing the number of test
functions would increase the number of modes).

Finally, the neutral stability curve is obtained from cI = 0. In general this has to be
solved numerically, however, by taking the limit of small h̄N an analytical solution is
possible. This gives cR = 1 where

HF: k =
h̄
−1/6
N

B +Bw

√

3MBBw

2Ka1/3

[

1 − h̄N

(

BBw

B +Bw
+

(B + Bw)2 cotβ

3MBBw

)]

+ O(h̄
11/6
N )

ST: k = h̄
−1/6
N

√

3M̂B̂

2Ka1/3

[

1 − h̄N

(

B̂ +
cotβ

3M̂B̂

)]

+ O(h̄
11/6
N ).
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Hence, the neutral wavenumber k for both HF and ST tends to infinity as h̄N tends
to zero. Recall from § 4.3.2 that in this limit the Reynolds number tends to zero and
the critical Reynolds number tends to minus infinity which is of course unphysical and
implies a zero critical Reynolds number. Notice that by using condition (4.3) the above
expressions for the HF and ST neutral wavenumbers are identical. This is to be expected
since convection does not enter the above expansions in h̄N at the level of truncation for
these expansions. Notice also that these expansions are not valid for M = 0. In this case
an expansion for small h̄N is not necessary since we have the exact solution,

cR = 1 , k = We−1/6

√

6

5
Re − cotβ ≡We−1/6

√

6

5
(Re−Rec),

which is identical to the LWE neutral stability curve in the absence of the Marangoni
effect as can be easily shown from (4.1).

5.3. Galerkin residuals of the energy equation: the GHF[m] and GST[m] models

5.3.1. Derivation of the models

The simple weighted residuals models SHF and SST are useful prototypes for the
study of the dynamics of a heated film. Also, the linear stability analysis of these models
in § 5.2.2 showed that they do predict the correct critical Reynolds number. However, we
also wish to recover close to criticality the LWE models obtained in § 4.

A more refined treatment of the temperature field will enable a weighted residuals
approach to yield LWE via an appropriate gradient expansion. We consider a general
polynomial expansion for the temperature field in powers of η and with amplitudes that
are only functions of x and t:

HF: T =

m
∑

i=−1

A(i)(x, t)ηi+1 , ST: T =

m
∑

i=−2

A(i)(x, t)ηi+2.

We note that unlike the studies by Scheid (2004) and Ruyer-Quil et al. (2005) where the
amplitudes in the expansion for the temperature field are assigned certain orders with
respect to ǫ, in our projection for the temperature field the order of the amplitudes is not
specified. We also note that the test functions utilized by Scheid (2004) and Ruyer-Quil
et al. (2005) did not satisfy all boundary conditions; instead the weight functions were
chosen so that the boundary conditions can be included in the boundary terms resulting
from the integrations by parts as was done in § 5.2.1.

Here we require that the temperature field satisfies all of its boundary conditions along
with T |η=1 = θ, a total of three conditions that need to be satisfied. For the HF problem
then we eliminate a total of three amplitudes, A(−1), A(0) and A(1). For the ST problem
we also utilize the condition Tyy = 0 on the wall which originates from a Taylor series
expansion of the energy equation (2.5d) at y = 0 (this is also consistent with LWE-
ST – T in (A 1b) has no quadratic term in y) and hence we eliminate four amplitudes,
A(−2), A(−1), A(0)(≡ 0) and A(1). In weighted residuals terminology, the elimination of
these amplitudes for the HF and ST problems is effectively equivalent to a ‘tau’ method
(Gottlieb & Orszag 1977).

We then project the temperature field onto the new set of test functions φ,

HF: T = φ0 + θφ1 +

m
∑

i=2

A(i)(x, t)φi, ST: T = φ̂0 + θφ̂1 +

m
∑

i=2

A(i)(x, t)φ̂i (5.10)

where we now have m amplitude functions, θ, A(2)...A(m) and the test functions are
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defined by

φ0 =
h(1 − η)2

2 +Bwh
, φ1 = 1 + (1 − η)ηBh+ φ0(B −Bw) ,

φi = ηi+1 − (i+ 1)
η2

2
+

(i− 1)(2 + (2 − η)ηBwh)

2(2 +Bwh)
for 2 6 i 6 m

and

φ̂0 = 1 −
3η

2
+
η3

2
, φ̂1 = 1 − φ̂0 + B̂h(1 − η2)

η

2
,

φ̂i = (i− 1)
η

2
− (i+ 1)

η3

2
+ ηi+2 for 2 6 i 6 m.

All the φi’s and φ̂i’s are non-negative in the open interval (0, 1). Also, by construction

the φi’s and φ̂i’s satisfy the same conditions on the surface, namely, φ0 = φ̂0 = φ1 − 1 =
φ̂1−1 = φi = φ̂i = 0 and φ0η

= φ̂0η
= φ1η

+Bh = φ̂1η
+B̂h = φiη

= φ̂iη
= 0. On the wall

the φi’s satisfy φ0η
+h−Bwhφ0 = φ1η

−Bwhφ1 = φiη
−Bwhφi = 0, while the φ̂i’s satisfy

φ̂0−1 = φ̂1 = φ̂i = 0, thus ‘homogenizing’ the inhomogeneous wall boundary conditions.
These new sets of test functions allow the temperature fields in (5.10) to satisfy all their
boundary conditions for each problem.

We now let wj denote the weight functions for the energy equation. In the Galerkin
weighted residuals approach, wj ≡ φj . The residuals 〈wj , RT 〉 = 0, 1 6 j 6 m, for HF
can then be written in matrix form as

3Pe
(

Mα At +Mβ Ax +Mγ A+ δ
)

= ∆ +MΓ A (5.11)

whereA = [θ,A(2)...A(m)]t, the matrices [Mα]ij = 〈φj , φi〉, [Mβ]ij = 〈φj , u
(0)φi〉, [Mγ ]ij =

〈φj , φit+u
(0)φix+v(0)φiy〉 and [MΓ]ij = 〈φj , φiyy〉 are of dimensionm×m and the vectors

[δ]j = 〈φj , φ0t +u(0)φ0x + v(0)φ0y〉 and [∆]j = 〈φj , φ0yy〉 are of dimension m×1. The set
of equations (5.1c), (5.4) and (5.11) will be referred to hereafter as the GHF[m] model.

The corresponding set of equations for ST can be obtained from (5.11) with φj → φ̂j .
The resulting set of equations will be referred to hereafter as the GST[m] model.

5.3.2. Obtaining LWE-HF/LWE-ST from the GHF[m]/GST[m] models

We now demonstrate that LWE-HF and LWE-ST in § 4 can be obtained from an ap-
propriate expansion of GHF and GST. For this purpose we assign the same orders of
magnitude for the parameters Re, Pe, We, M , B and Bw as in the LWE. It is important
to point out here that our averaged model in (5.11) has been derived without overly
restrictive stipulations on the order of the dimensionless groups (see Kalliadasis et al.
(2003a,b) for a discussion of lower/upper bounds on the order of magnitude of the di-
mensionless parameters). For example, changing the order of Pe in (5.11) would lead to
a different long-wave expansion to that obtained in § 4.

Let us now expand q and the amplitudes θ and A(i) as q = q0 + ǫq1 + O(ǫ2), θ =
θ0 + ǫ1−nθ1, A

(i) = A0i + ǫ1−nA1i where Pe = O(ǫ−n) with 0 < n < 1 and we truncate
our expansions so that terms of O(ǫ2) and higher in (5.4) are neglected while terms of
O(ǫ) and higher in (5.11) are neglected. Equation (5.4) then yields

q =
1

3
h3 +

2

5
Reh6hx −

1

3
h3hx cotβ −

1

2
Mh2θx +

1

3
Weh3hxxx (5.12)

We note that at this point θx from the averaged system in (5.11) remains undetermined,
however, we shall demonstrate that it is identical to the one obtained from LWE.
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LWE-HF LWE-ST SHF SST GHF[1] GST[1]

(5.1c) (5.1c) (5.1c) (5.1c)

(4.1a) (4.1b) (5.4) (5.4) (5.4) (5.4)

(5.8a) (5.8b) (B 1a) (B 1b)

Table 1. Summary of equations for the different time-dependent models: LWE – long-wave
expansion (§ 4.1), SHF/SST – simple heat flux/specified temperature (§ 5.2.1), GHF[1]/GST[1]
– single-model Galerkin approach for heat flux/specified temperature (§ 5.3.1, Appendix B). The
corresponding traveling wave models are obtained by introducing in the time-dependent models
the moving coordinate Z = X − cΘ with ∂/∂Θ = −c∂/∂Z.

Substituting now q from equation (5.12) into equation (5.11), the ǫ1−n -expansions for
the temperature and utilizing the kinematic boundary condition (5.1c) yields:

θ = F +
1

40
PeBGh3hx , A(2) =

1

2
PeB2(1 −Bwh)F

2h4hx

A(3) =
1

8
PeBwB(1 + 3Bh)F 2h4hx , A(4) = −

3

40
PeBwB

2F 2h5hx.

We also have A(i) = 0 for i > 5, for HF, while for ST we have

θ = F̂ +
1

40
PeB̂Ĝh3hx , A(2) =

1

8
PeB̂(1 + 3B̂h)F̂ 2h4hx , A(3) = −

3

40
PeB̂2F̂ 2h5hx

with A(i) = 0 for i > 4. The expressions for θ are then substituted into (5.12), which in
turn is substituted into the kinematic condition (5.1c) to yield LWE-HF given in equation
(4.1) and the corresponding equation for LWE-ST. Further, when all the amplitude
functions are substituted into equations (5.10a) and (5.10b), we obtain exactly the same
temperature fields as those given in equations (A 1a) and (A 1b).

Hence, we have demonstrated that in order to obtain the long-wave theory of § 4 to
O(ǫPe) from an appropriate expansion of our Galerkin system, and hence fully resolve
the behavior close to criticality, we need m > 4 for HF and m > 3 for ST.

Finally, we note that in the limit h̄N → 0 (so that Re, Pe → 0) all models including
SST and SHF reduce to the corresponding LWE models in this limit. This expansion
should not be confused with the ǫ-gradient expansion for fixed h̄N performed above for
the GHF/GST models to fully recover the LWE model.

5.3.3. Single mode Galerkin residuals approach: the GHF[1] and GST[1] models

Although 4 and 3 are the minimum dimensionalities to fully resolve the behavior of
long waves for HF and ST, respectively, for convenience we shall investigate the models
obtained at the lower possible level of truncation, i.e. for m = 1. At this level the
temperature profiles for HF and ST are quadratic and cubic in η, respectively, T =
φ0 + θφ1 and T = φ̂0 + θφ̂1. The relative simplicity, at least compared to the higher-
order projections, of the m = 1 models makes them useful prototypes for numerical and
mathematical scrutiny. Appendix B gives explicitly (5.11) for m = 1. The linear stability
analysis of these models is done similarly to that of the SHF/SST models in § 5.2.2. Table
1 summarizes the different models.
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(a) (b)

Figure 2. Neutral stability curves in the wavenumber k −Re plane with Pr = 7; (a) HF for

Ma = 21.6, Biw = 0.6, Bi = 0.12;(b) ST for M̂a = 30 and B̂i = 0.1.

6. Comparisons

In all our computations we take β = π/2, Ka = 3000 and Pr = 7, however, in order to
assess the influence of the convective heat transport effects we shall sometimes include
results with Pr = 1. Also as stated in section § 4.3, we take B̂i = 0.1 along with the two
parameter sets defined for Biw, Bi and Ma. Recall that these sets of values have been
chosen in order to allow the HF and ST problems to have the same long-wave limits as
Re tends to zero.

6.1. Neutral stability curves

Figure 2 illustrates typical curves for the neutral wavenumber of infinitesimal distur-
bances as a function of Re obtained from the averaged models and the Orr-Sommerfeld
analysis for the HF and ST cases, referred to as OS-HF and OS-ST, respectively. For
consistency with the other models the Orr-Sommerfeld wavenumber has been scaled with
1/We1/3.

For small Re all models agree. In fact, as Re tends to zero the neutral wavenumber
tends to infinity for both ST and HF cases. For the ST case this is in agreement with
the OS-ST analysis by Scheid et al. (2005). This behavior is also consistent with our
analysis in § 5.2.2 of the neutral curve of the SHF and SST models in the limit of small
film thicknesses. This behavior indicates that the Marangoni effect is stronger in this
region. We shall return to this point when we discuss the nonlinear regime. As Re now
increases our models predict slightly smaller wavenumbers than OS-HF/ST initially, but
further increasing Re shows that our models overpredict the neutral wavenumbers and
they increasingly deviate from OS-HF/ST. This is to be expected as we have not taken
into account the second-order dissipative effects. As was shown by Scheid et al. (2005) for
the ST case taking these terms into account leads to a good agreement of the resulting
Galerkin model with OS-ST for a much larger region of Reynolds numbers. Finally we
note that for the HF case our models are almost graphically indistinguishable from each
other over the entire range of Reynolds numbers in figure 2(a) and they both start to
diverge from OS-HF at Re ∼ 2. For the ST case both models follow a similar path,
however the SST model performs better than the GST[1] with the divergence of SST at
around Re ∼ 6.
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6.2. Solitary waves

We now seek travelling wave solutions propagating at a constant speed c. We introduce
the moving coordinate transformation Z = X−cΘ in the time-dependent models of table
1 with ∂/∂Θ = −c∂/∂Z for the waves to be stationary in the moving frame.

The equation obtained from the LWE model in (4.2) in the moving frame can then
be integrated once with the integration constant determined from the far field condition
h → 1 as Z → ±∞ which leads to a nonlinear eigenvalue problem for the speed of the
traveling waves c. For the weighted residuals models we use the kinematic condition (5.1c)
which in the moving frame yields −ch′+q′ = 0. This can be integrated once and we fix the
integration constant by demanding h, q → 1, 1

3 as Z → ±∞. This gives a relation between
the flow rate and the film thickness, q = (1/3)+c(h−1). The SHF/GHF[1] traveling wave
models consist of (5.4) and (5.8a)/(B1a) in the moving frame and with q eliminated from
the above expression. These equations along with the boundary conditions h(±∞) = 1
and θ(±∞) = F define the SHF/GHF[1] nonlinear eigenvalue problems for the speed c
of the solitary waves. Finally, the SST/GST[1] traveling wave models consist of (5.4) and
(5.8b)/(B1b,) in the moving frame and with q eliminated from the above expression.

These equations along with the boundary conditions h(±∞) = 1 and θ(±∞) = F̂ define
the SHF/GHF[1] nonlinear eigenvalue problems for the speed c of the solitary waves.

Here we restrict our attention to single-hump solitary waves. They correspond to the
principal homoclinic orbits of the dynamical systems corresponding to the traveling wave
models. We compute them using the continuation software AUTO97 (Doedel et al. 1997).
Appendix C analyzes the linearized traveling wave equations for the different models and
provides necessary conditions for the existence of solitary waves and sufficient conditions
for the non-existence of such waves.

Figure 3 shows typical bifurcation diagrams for the speed c of the solitary waves as
a function of Re. Figures 3(a-c) depict bifurcation diagrams for positive-hump waves
(characterized by c > 1) and figure 3(d) negative-hump waves (characterized by c < 1).
The ST problem has positive-hump waves only while the HF problem has negative-hump
waves co-existing with positive-hump ones. The ST problem admits negative multi-hump
waves but as we pointed out earlier here we focus on single-hump waves only.

We first discuss figures 3(a-c). Following our discussion in § 4.3 we take in these figures
two sets of parameter values with Biw = Bi = 0.2 and Biw = 0.6, Bi = 0.12 (our
discussion in § 4.3 was based on LWE but for comparisons purposes we choose the same
values for the other models). For the ST models we take M̂a = 0, 30 and 75. Hence, the
first set of values for the HF models is Ma = 0, 12 and 30 and the second set is Ma = 0,
21.6 and 54.

Interestingly as Re tends to zero the speed (and amplitude) of the solitary pulses
tends to infinity. This is consistent with the linear stability analysis in figure 2 which
indicates that the influence of the Marangoni effect is larger for small Re. This unusual
behavior was first pointed out for the ST case by Kalliadasis et al. (2003a) and was
further discussed by Scheid et al. (2005). In the limit of vanishing Reynolds number,
inertia effects are negligible and the Marangoni effect is very strong. This is also evident
from our scalings in § 2.2, M = Ma/h̄N and M̂ = M̂a/h̄2

N, which show that M, M̂ → ∞
as h̄N → 0. In this region of small film thicknesses, the destabilizing forces are interfacial
forces due to the Marangoni effect (capillary forces are always stabilizing). Contrast with
the isothermal falling film where the only destabilizing forces are inertia forces which are
vanishing as Re tends to zero so that c in this region should approach the infinitesimal
wave speed 1, as the Ma = M̂a = 0 curves in figure 3 do. In the presence of the Marangoni
effect our computations indicate that for Re → 0 the width of the solitary pulses also
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(a) (b)

(c) (d)

Figure 3. Single-hump solitary wave bifurcation diagrams for the speed c as a function of
Reynolds number Re from various models with Pr = 7. The circle in (a,b,c) corresponds to

Ma = M̂a = 0. (a,b,c) represent positive-hump waves and (d) negative-hump ones; (a) HF with
Biw = Bi = 0.2; the square corresponds to Ma = 12 and the triangle to Ma = 30; (b) HF with
Biw = 0.6 and Bi = 0.12; the square corresponds to Ma = 21.6 and the triangle to Ma = 54; (c)

ST with B̂i = 0.1; the square corresponds to M̂a = 30 and the triangle to M̂a = 75; (d) GHF[1]
with Biw = 0.12 and Bi = 0.6. The three lines correspond to Ma = 0, Ma = 21.6 and Ma = 54,
from the top to the bottom, respectively.

tends to infinity but at a rate faster than that for the amplitude, so that the long-wave
approximation is not violated. However, as was emphasized by Kalliadasis et al. (2003a)
this behavior for Re → 0 does not correspond to a true singularity formation as other
forces of non-hydrodynamic origin (e.g. long-range attractive intermolecular interactions)
which have not been included here become predominant in this region thus arresting the
singularity formation (in other words the zero-Re limit is never reached).

On the other hand for large film thicknesses inertia forces dominate Marangoni forces
and in fact M, M̂ → 0 as h̄N → ∞ so that the Marangoni forces diminish in this limit
and the temperature field has only a weak effect on the hydrodynamics. Hence, for large
Re the different M, M̂ curves should merge into a single curve, as figures 3(a-c) indicate.
This curve seems to asymptote towards a certain value for large Re which is the same to
that in the isothermal case. Here we do not track the solution branches beyond Re = 8.
In any event, in the region of relatively large Re the capillary forces are probably not
strong enough to stabilize the large destabilizing inertia effects and 1D solitary pulses
could develop instabilities in the transverse direction.
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Figures 3(a-c) indicate that both LWE models exhibit an unrealistic behavior with
branch multiplicity and turning points at particular values of Re. By analogy now with
the isothermal case and as we discussed in § 1 we expect that LWE exhibits a finite-
time blow-up behavior for Re larger than the values corresponding to the turning points
(this has been confirmed by time-dependent computations). Obviously this catastrophic
behavior is related to the non-existence of solitary waves and indicates the inability of
LWE to correctly describe nonlinear waves far from criticality. Moreover figure 3(a) shows
the existence of limit points where LWE simply terminates, not observed before in studies
of the isothermal falling film. In Appendix C1 we show that this corresponds to all of
the spatial eigenvalues of the linearized system at h = 1 having real parts with the same
sign so that homoclinic orbits do not exist.

Figures 3(a-c) also indicate that all models collapse into a single line in the region
Re → 0. This is consistent with our observation at the end of § 5.3.2. Also for Ma =
M̂a = 0 (curves marked with a circle) the figures 3(a), (b) and (c) give the same solution
branches for each of the LWE, simple weighted residuals and Galerkin approximations,
as expected. We note that figures 3(b) and 3(c) (with the exception of the Ma = M̂a = 0
curves) are almost identical for LWE. This is consistent with our discussion in § 4.3:
indeed C > 0 in figure 3(b) while for LWE-ST Ĉ is always > 0. The Galerkin models in
figures 3(b,c) are qualitatively similar, note, however, the relatively flat region around
Re ∼ 2 for GST[1] with M̂a = 75. The simple weighted residuals models in figures 3(b,c)
are also qualitatively similar, notice however, that SHF is slightly above GHF[1] in figure
3(b) and slightly below GHF[1] in figure 3(c). Note that in figure 3(c) we were not able
to continue the numerical solution to Re above ∼ 5 due to the fact that the coefficient
of θZ is close to zero in this region (see § 8.3). This is purely a numerical difficulty and
does not imply that the solution ceases to exist after this point.

Further, we note that figures 3(a) and 3(b) (again with the exception of the Ma =
M̂a = 0 curves) are different for all LWE models. Now C < 0 in figure 3(a) while for
LWE-ST Ĉ is always > 0. Following then from our discussion in § 4.3 the LWE-HF and
LWE-ST models show different behaviors. The simple weighted residuals and Galerkin
models in figures 3(a) are qualitatively similar to those in figure 3(b), however, a marked
difference between the two is observed as the Marangoni number increases. Note also
that in figure 3(a) the SHF model predicts faster waves than the GHF[1] model whilst
in figure 3(c) we see that the SST model predicts slower waves than the GST[1] model.

We now turn to the negative-hump waves in figure 3(d). With the exception of the
Ma = 0 curve that approaches the speed of 1 as Re tends to zero, for the remaining
curves the speed approaches minus infinity, consistent with our earlier observation that
the Marangoni effect is very strong in this region. Again forces of non-hydrodynamic
origin such as intermolecular interactions would introduce a lower bound here especially
as for negative-hump waves the largest free-surface deformation is towards the wall. On
the other hand, for large Re all curves merge into a single one like with the positive-hump
waves but one needs to go to sufficiently large Re, e.g. for Re > 60 the three different
curves have speeds in the interval [0.4, 0.5]. The final asymptotic value for the three
curves is c ∼ 0.4.

7. Spatio-temporal dynamics

We now illustrate the spatio-temporal dynamics of the heated falling film by using
the GST[1] and GHF[1] models. The previous studies by Kalliadasis et al. (2003a) and
Scheid et al. (2005) on heated falling films focused on the construction of stationary
solitary waves only (using ST) without any time-dependent computations. For our com-
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Figure 4. Time evolution for the free surface (a,b) and interfacial temperature (c,d) in an

extended domain for GST[1] and in a coordinate system moving with speed c. B̂i = 0.1, M̂a = 30
and Pr = 7. In (a,c) c = 1.1 for Re = 3 and in (b,d) c = 1.46 for Re = 4. Successive curves in (a,c)
are separated by ∆Θ = 100 with Θ ∈ [0, 3×103] and in (b,d) by ∆Θ = 50 with Θ ∈ [0, 1.5×103 ].

putations we employ a Crank-Nicolson-type implicit scheme with the spatial derivatives
approximated by central differences and with dynamic time-step adjustment. We impose
periodic boundary conditions over a domain much larger than the maximum growing
wavelength predicted by linear stability. The initial condition is a Gaussian distribu-
tion in the middle of the domain. The computations are performed in the moving frame
Z = (x− ct)/We1/3 with time given by Θ = t/We1/3.

Typical time evolutions of the free surface and interfacial temperature for the GST[1]
model are shown in figure 4 for B̂i = 0.1, M̂a = 30 and Pr = 7, corresponding to the
parameter values in figure 3(c) with M̂a = 30. Within the inception region the wave
amplitude grows exponentially in time, as predicted by linear stability. Immediately
beyond it, the waves begin to steepen in front and develop a back shoulder, signifying
a weakly nonlinear excitation of an overtone. The amplitude modulation still persists,
however, the larger waves now begin to accelerate, they collide with the smaller waves
in front of them and eventually overtake them. These coalescence events are evident for
both free surface and interfacial temperature.

For Re = 3 figure 4(a) shows that the final result of the evolution is a train of soliton-
like coherent structures with almost the same amplitude and which interact indefinitely
with each other like in soliton-soliton elastic collision. For Re = 4 figure 4(b) shows that
the final result of the evolution are three large amplitude waves each of which preceded
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Figure 5. Time evolution for the free surface (a,b) and interfacial temperature (c,d) in an
extended domain for GHF[1] and in a coordinate system moving with speed c. Pr = 7 and
Re = 3 in a coordinate system moving with a speed c. In (a,c) c = 1.135 for Bi = Biw = 0.2 and
Ma = 12 and in (b,d) c = 1.1 for Bi = 0.12, Biw = 0.6 and Ma = 21.6. Successive curves are
separated by ∆Θ = 100 with Θ ∈ [0, 3 × 103].

by a train of small-amplitude soliton-like coherent structures. The large waves collide
with the smaller waves at the front and eventually absorb them, leaving a flat region
behind them. Due to the flat film instability, waves begin to grow in the flat film region
behind the large waves and they start to evolve towards solitary wave trains. However,
due to the periodicity, they cannot escape from the large amplitude waves which collide
with these smaller waves and overtakes them.

These coherent structures posses a gentle slopped back edge and a steep front edge pre-
ceded by some small bow waves and are reminiscent of the infinite-domain positive-hump
solitary pulses obtained in § 6.2 (figure 3(c) with M̂a = 30). However, the wavespeeds
predicted by the time-dependent calculations are smaller than those predicted by the
stationary travelling wave calculations. This is due to the time-dependent calculations
having an average film thickness of 1, whilst the stationary travelling waves approach a
flat film region close to 1 far from their hump so that their average film thickness is greater
than 1. As the film thickness is smaller and the wavespeed has been scaled with the film
thickness, we expect that the resulting wavespeed in time-dependent computations will
also be smaller.

Interestingly in all cases the interfacial temperature is similar to an inverse of the
free surface. Further, we note that for the Re values in figure 4 LWE does not have any
solitary wave solutions (see figure 3(c) with M̂a = 30). As a matter of fact time-dependent
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Figure 6. Time evolution for the free surface (a,b) and interfacial temperature (c,d) in an
extended domain for GHF[1] and in a coordinate system moving with a speed c. Pr = 7,
Biw = 0.12, Bi = 0.6 and Ma = 21.6. In (a,c) c = 1.0 for Re = 1 and in (b,d) c = 1.4 for Re = 3.
Successive curves are separated by ∆Θ = 50 with Θ ∈ [0, 1.5 × 103].

computations of LWE show that it blows up in finite time for the parameter values in
figure 4. Unlike LWE, our models are quite robust and they do not exhibit any singularity
formation.

Figure 5 depicts a typical time evolution obtained from the GHF[1] model for Pr = 7,
Re = 3 and the two sets of values, [Biw, Bi,Ma] = [0.2, 0.2, 12] and [Biw, Bi,Ma] =
[0.6, 0.12, 21.6], corresponding to the traveling-wave bifurcation diagrams in figure 3(a)
with Ma = 12 and figure 3(b) with Ma = 21.6, respectively. Again the free surface
approaches a train of coherent structures that resemble the infinite-domain positive-hump
waves computed in figures 3(a) and 3(b) whilst the interfacial temperature is similar to
an inverse of the free surface.

Additional computations with the GHF[1] model are shown in figure 6. In figures
6(a,c), Re = 1, Pr = 7 and [Biw, Bi,Ma] = [0.12, 0.6, 21.6] corresponding to the middle
curve of the traveling-wave bifurcation diagram in figure 3(d). The initial condition starts
to grow into an expanding radiation wavepacket. Positive-hump waves are created from
the front of the wavepacket and negative-hump ones from its back. This negative-hump
waves correspond to those computed in figure 3(d). The system eventually approaches a
train of coherent structures consisting of co-existing positive- and negative-hump waves.
Stationary traveling negative-hump waves also exist in isothermal films but they are
unstable in time-dependent computations (Chang & Demekhin 2002). Increasing the
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Reynolds number to Re = 3 in figures 6(b,d) suppresses the negative-hump waves and
leads to a train of positive-hump ones. Note that the large-time behavior of the free
surface in figure 6(a) is reminiscent of the Kuramoto-Sivashinsky (KS) spatio-temporal
chaos/turbulent-like dynamics. On the other hand, in figure 6(b) the surface approaches a
series of ‘bounded states’ like in Kawahara equation (KS with dispersion) for sufficiently
large dispersion (Kawahara 1983). This highlights the significance of the dispersive effect
associated with the Péclet number: increasing the Pćlet number ‘regularizes’ the system
and selects a regular train of large amplitude solitary pulses.

8. Finite differences solutions of the energy equation for HF and ST:
FDHF and FDST

We now contrast the interfacial temperature distribution obtained from our (one-
dimensional) one-mode averaged models with the solution of the two-dimensional (2D)
energy equation in (5.7), which is after all the equation we trying to model. We set
Ma = M̂a = 0. The reason for this is two-fold: (i) the hydrodynamic and thermal prob-
lems are decoupled so that the temperature field does not have any influence on the
film thickness. However, the evolution of the film thickness does affect the temperature
field. We emphasize that Shkadov’s IBL solitary wave solution branches are in quantita-
tive agreement with the boundary-layer (Demekhin et al. 1987) and full Navier-Stokes
equations (Salamon et al. 1994; Ramaswamy et al. 1996) while the single-mode corrected
Shkadov model in (5.4) (with M = 0) is in quantitative agreement with full Navier-Stokes
(Ruyer-Quil & Manneville 2000, 2002). Hence we do have a proper description of the hy-
drodynamics; (ii) the decoupling of hydrodynamics from energy significantly simplifies
the computations of the 2D temperature field.

Substituting the flow field from (5.2) and (2.5a) into (5.7), we obtain

Tηη =
Prδ

2

[(

3qh(2η − η2) − 2ch2
)

TZ + chhZη(η − 1)(η − 2)Tη

]

(8.1a)

subject to the boundary conditions

Tη = −BhT on η = 1 (8.1b)

Tη = −h+BwhT on η = 0 for HF (8.1c)

T = 1 on η = 0 for ST (8.1d)

which is solved in 2D along with periodic boundary conditions in the Z-direction where
h is obtained from the isothermal momentum equation (5.4) in the moving frame Z with
q = 1

3 + c(h − 1). The above system was solved numerically using a finite-differencing
scheme. We shall refer to the numerical solution of equations (8.1a), (8.1b) and (8.1c) as
‘finite differences for HF’ or FDHF and the numerical solution of equations (8.1a), (8.1b)
and (8.1d) as ‘finite differences for ST’ or FDST. Note that although the computations
were performed over an extended domain here we only illustrate the solutions near the
wave maximum.

Figure 7 compares the temperature distributions obtained for the different models for
Pr = 7, Ma = M̂a = 0 and in the region of moderate Re. LWE is not included as in
this region it does not predict the existence of solitary waves. All models use the same
isothermal fluid flow and free surface. Clearly, for small values of Re all models are in
good agreement, as expected. For larger Re we observe a difference between our models
and FD. This difference increases as Re increases. More specifically, figures 7(a,c,e) for
Re = 10/3 show that the interfacial temperature distributions obtained from our averaged
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparison of the interfacial temperature distribution obtained from various models
for Ma = M̂a = 0 and Pr = 7. In (a, b) (HF) for Biw = Bi = 0.2. In (c, d) HF for Biw = 0.6

and Bi = 0.12. In (e, f) ST for B̂i = 0.1. In (a, c, e) Re = 10/3 and in (b, d, f) Re = 5.

models for both HF and ST are quite close to FDHF and FDST, respectively. Figures
7(b,d,f) for Re = 5 show that the Galerkin models for both HF and ST predict a similar
interfacial temperature minimum to that obtained from FDHF and FDST. The simplified
models on the other hand follow closely the front of the interfacial temperature wave but
they overshoot the minimum.

Let us now compare HF and ST with each other. For this purpose we plot the nor-

malized interfacial temperature distributions θ/F for HF and θ/F̂ for ST so that both
normalized profiles lead to a flat film solution of unity. Figure 8 depicts the normalized
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Figure 8. Normalized interfacial temperature for FDHF and FDST with Ma = M̂a = 0 and
Pr = 7. In (a) Re = 3 and in (b) Re = 4. Biw = 0.2 when Bi = 0.2 and Biw = 0.6 when Bi = 0.12.

FDHF and FDST solutions for Re = 3 and Re = 4. At the front of the interfacial tem-
perature wave both rescaled temperatures are very similar. There is, however, a marked
difference for the temperature minimum, with the FDHF solution for Bi = Biw = 0.2
predicting the lowest minimum, and the FDST solution predicting the highest minimum.
The FDHF model with Bi = 0.12 and Biw = 0.6 follows quite closely the FDST solution.
The FDHF solution for Bi = Biw = 0.2 also predicts the longest tail for the rescaled
interfacial temperature at the back of the wave. Further, an overshoot at the back of the
wave is present for the FDHF solution for Bi = Biw = 0.2 unlike the other two solutions.

FDHF for the second set of values, namely Bi = 0.12 and Biw = 0.6 which satisfies
Biw > Bi (see § 4) produces results fairly close to those obtained from FDST. Hence, for
convenience we shall only illustrate results for the ST problem in the remainder of this
study.

8.1. Recirculation zones

With reference now to figure 7, we have found that all our averaged models are in good
agreement with FD provided that Re . 4.5. For larger values of Re a slender clockwise-
turning recirculation zone appears inside the solitary wave. This zone is accompanied by
two stagnation points, one at the front and one at the back of the wave (recall that the
computations are done in the moving frame).

8.1.1. On the validity of the long-wave approach in the presence of recirculation zones

The presence of recirculation zones does not invalidate the assumption u ≫ v neces-
sary for the long-wave approximation. Indeed the computed streamlines correspond to
envelopes of the velocity field in the moving frame (U, v)t with U = u− c. Recirculation
zones indicate regions where v ≫ U , e.g. points where the flow returns with U = 0 and
the stagnation points where U = v = 0. However, in the laboratory frame these regions
have u = c ≫ v so that the conditions u ≫ v in the laboratory frame and v ≫ U in the
moving frame can both hold at the same time.

It is important to emphasize that if closed streamlines exist in the moving frame,
a fluid particle is trapped in both moving and laboratory frames. Hence, solitary waves
with recirculation zones ‘transport’ the trapped fluid mass downstream [in fact this is the
chief mechanism behind heat/mass transport enhancement in wavy interfaces]. However,
the streamlines in the laboratory frame are not closed, in this frame a particle simply
moves faster and slower to the wave crest at the top and bottom halfs of the (moving
frame) recirculation zone, respectively.
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Hence the appearance of the recirculation zone is a manifestation of the moving frame.
Clearly, in the laboratory frame all of the fluid will move forward without any recircu-
lation. It is precisely for this reason that the long-wave assumption still holds. In fact,
as emphasized earlier, for isothermal films the Shkadov IBL solitary waves are in good
agreement with direct numerical simulations of full Navier-Stokes (the same is true for the
solitary waves of a model obtained by a high-order weighted residual technique (Ruyer-
Quil & Manneville 2002)) despite the fact that for the solitary waves of largest amplitude
a recirculation zone is present below the hump. Similarly, the long-wave approximation
has been successful in describing recirculation zones in different settings including, the
problem of a moving contact line where a recirculation zone can occur below the capillary
ridge appearing in the immediate vicinity of the contact line (Goodwin & Homsy 1991).

8.2. Thermal boundary layers

In figure 9 we show streamlines and isotherms in the absence of the Marangoni effect with
Pr = 7 and Re = 4, 5 obtained from FDST. As is evident from figures 9(c,d) the presence
of the recirculation zone alters dramatically the topology of the isotherms. For Re = 4
the isotherms are nearly aligned while for Re = 5 they are deflected upwards due to the
movement of the fluid in the recirculation zone. This tightening of the isotherms occurs
in the vicinity of the front stagnation point in the flow associated with the formation of
steep temperature gradients there. The formation of steep temperature gradients close to
the front stagnation point was also shown by Scheid et al. (2005) by using the weighted
residual models developed by Ruyer-Quil et al. (2005)(systems (4.18) and (6.6) in their
study).

In figure 10 we illustrate the effect of the Péclet number on the heat transport process
before and after the recirculation zone appears. The interfacial temperature distribution
is obtained from FDST. In figure 10(a) we take Re = 4 in which case a recirculation zone
does not exist while in figure 10(b) we take Re = 5 in which case a recirculation zone is
present. In the absence of a recirculation zone, increasing the Péclet number dampens
the free-surface temperature distribution. On the other hand, when a recirculation zone
is present, increasing the Péclet number causes a sharp gradient on the free-surface tem-
perature distribution. Figure 10(c) shows that the sharp gradient appears in the vicinity
of the front stagnation point corresponding to the formation of a thermal boundary layer
and in fact the maximum of the temperature gradient moves towards the front stagnation
point as Pr increases and is located exactly at that point in the limit of infinite Péclet
number (note the non-monotonic variation of the maximum gradient with h) †‡.

We expect that in the presence of the Marangoni effect and for large Péclet numbers,
the sharp spike in θZ will have a significant influence on the fluid flow. It is quite likely
that in this case thermocapillarity might cause the formation of a recirculation zone
at smaller Re and might tighten both streamlines and isotherms due to enhancing the

† The thickness of the boundary layer is expected to be of order Pe−1/2 appropriate for
a mobile interface, see e.g. Shraiman (1987) and Trevelyan et al. (2002). The presence of a
stagnation point where the boundary layer turns from the interface along the stagnation line
into the fluid as well as the presence of a free surface would make a singular perturbation analysis
rather involved if not impossible (unlike e.g. Trevelyan et al. (2002)).

‡ The reason the boundary layer appears at the front stagnation point is due to the fact that
for large Pe (convection dominates over diffusion of heat) the flow in the moving frame transfers
large amounts of heat on the free surface from either side of the stagnation point: to the left of
the front stagnation point we have a clockwise recirculation zone and hence U > 0 there while
to the right U < 0. This can be easily seen by checking the sign of U on the flat film region
ahead of the front stagnation point: in this region ψ = (3h− y)(y2/6) so that u|y=1 = 1/2 and
U|y=1 = (1/2) − c < 0 since c > 1.
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(a) (b)

(c) (d)

Figure 9. Streamlines (a,b) and isotherms (c,d) obtained computationally from FDST with

M̂a = 0, B̂i = 0.1 and Pr = 7. In (a,c) Re = 4 and in (b,d) Re = 5.

circulation in the primary solitary hump thus leading to both large temperature and
velocity gradients in the flow.

8.2.1. Comparison of different ST models with FDST

Figure 11 compares the minimum of the interfacial temperature distribution θmin for
ST as a function of Re obtained from SST and GST[1] to that obtained from FDST. Once
the recirculation zone appears at Re = 4.5, FDST falls rapidly to a value of θmin 0.47
where it saturates as Re increases. The curve terminates at Re = 7 simply due to numer-
ical difficulties with FDST at large Re.

Prior to the appearance of the recirculation zone both SST and GST[1] accurately
model FDST. However, soon after the birth of the recirculation zone, the SST model
appears to diverge away from FDST almost quadratically as Re increases. On the other
hand, the GST[1] appears to follow FDST for a larger region of Reynolds numbers but
at some point it starts to diverge almost linearly thus predicting higher interfacial tem-
peratures than SST and closer to the actual values predicted by FDST.

The new model GST[1] shows a marked improvement over the previous SST model.
Nevertheless, despite the improvement at some point the new model also starts to deviate
from the actual interfacial temperature. In fact, both models give negative temperatures
at some Re which are obviously unphysical: turning back to dimensional quantities, this
would imply that the interfacial temperature can be locally smaller than the air temper-
ature.

Clearly, the increased deviation between the interfacial temperature predicted by our
models and the numerical solution of the 2D energy equation is due to the formation of
a boundary layer at the front stagnation point with large gradients in θZ as discussed in
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(a) (b)

(c)

Figure 10. The interfacial temperature against Z and the gradient of the interfacial temperature
against h, obtained computationally from FDST with M̂a = 0 and B̂i = 0.1. In (a) Re = 4 and
Pr = 1, 3, 8, 20, 40 and 90 and in (b, c) Re = 5 and Pr = 0 to 7 in increments of 1. The vertical
dashed line in (c) denotes the location of the stagnation point.

§ 8.2. As a consequence for large Re all models overshoot the minimum temperature to
give negative temperatures. In fact, any weighted residuals approach is bound to deviate
from the actual temperature for large Re: to accurately represent the temperature field
as the boundary layer develops, one would need an increasingly large number of test
functions and thus amplitude equations.

8.3. The modified SST and GST[1] models

We note that as θmin tends to zero for both SST and GST[1] the absolute value of the
coefficient of θZ also gets smaller and eventually passes through zero for both models.
[θmin < 0 and the absolute value of the coefficient of θZ going through zero, do not
necessarily occur at the same time, in general θmin < 0 occurs first]. To test if there
is a link between the two we develop models which prevent the absolute value of the
coefficient of θZ in SST and GST[1] models from going through zero. This is accomplished
by modifying appropriately the weight function for the energy equation. The modified
SST and GST[1] models, referred to as MSST and MGST[1] models, respectively, are
derived in Appendix D.

Figure 11 shows that the new traveling wave models never predict negative tempera-
tures. It then appears that there is a link between θmin < 0 and the absolute value of the
coefficient of θZ passing through zero. Obviously, when the coefficient of θZ is exactly
zero the associated dynamical system has a singularity which would then cause some
formidable difficulties in the numerical construction of the traveling waves. However, be-
fore this happens we do not encounter any difficulties in the numerical construction of
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Figure 11. Comparison of the minimum interfacial temperature θmin against Re obtained
from the different models (see table 1) with FDST; M̂a = 0, B̂i = 0.1 and Pr = 7.

the traveling waves and yet we have an increased divergence from FDST. Hence, the
presence of negative temperatures is not due to numerical problems but to the reduction
of the coefficient of θZ .

It is important to emphasize that θmin < 0 appears earlier in the presence of the
Marangoni effect, e.g. in the bifurcation diagrams of figure 3(c); this will happen at some
value of Re above the one corresponding to the appearance of a recirculation zone. The
value of Re at which a recirculation zone forms decreases with increasing M̂a. After the
value of Re at which θmin < 0, the bifurcation diagrams for the speed of the solitary
waves as a function of Re can be continued to larger Re while the temperature still
remains negative (in fact for M̂a = 0 continuation of the GST[1] curve in figure 3(c)
will eventually lead to negative temperatures at some Re > 8 while the SST model has
already developed negative temperatures at Re ∼ 6). This continuation is possible at
least up to the point where the coefficient of θZ vanishes (see our earlier discussion).

The values of Re where this happens, and for that matter the values of Re where a
recirculation zone appears, are not far (at least for small M̂a) from the region where
the bifurcation curves for different M̂a predict speeds close to the final asymptotic value
for large Re which coincides with the value obtained from the isothermal case (as we
emphasized in § 6.2 as Re increases M̂ tends to zero and eventually the hydrodynamics
is decoupled from the energy transport). Hence, the speed c of the solitary waves is
predicted accurately at least when the bifurcation curves start approaching the isothermal
asymptote and also prior to the development of a recirculation zone. It is precisely for this
reason that we kept the momentum equation in (5.4) the same throughout this study:
unphysical temperatures originate from the treatment of the energy equation and not
the momentum equation.

Figure 11 indicates that both MSST and MGST[1] offer a substantial improvement over
the SST and GST[1] models. This is due to the fact that these models have eliminated
the deficiency from which the SST and GST[1] models suffer, i.e. the reduction of the
absolute value of the coefficient of θZ . Nevertheless, a divergence (albeit slow) from FDST
is also observed for MSST and MGST[1] and eventually these models level off at some
θmin value lower to that predicted by FDST. Again, this is due to the development of a
thermal boundary layer at the front stagnation point.
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9. Conclusion

We have analyzed the dynamics of a film falling down a heated wall. We considered
two types of wall boundary conditions: heat flux (HF) and specified temperature (ST).
The flow and heat transport were first modeled with a long-wave theory for large Péclet
numbers. We subsequently developed averaged models using a weighted residuals ap-
proach. In these models the flow was modeled via a first order in ǫ single mode Galerkin
approximation of the momentum equation. The transport of heat was modeled in two
ways: (i) a simple first order in ǫ weighted residuals approximation with a single test
function which does not satisfy all boundary conditions; (ii) a refined treatment of the
energy equation by using a first order in ǫ Galerkin approximation based on a set of test
functions that satisfy all boundary conditions.

We examined the solitary wave solutions of the long-wave theory and the models
obtained from the simple weighted residuals and single-mode Galerkin projections for
both HF and ST cases. The bifurcation diagrams for the speed of the solitary waves as
a function of Reynolds number obtained from the long-wave theory is unrealistic with
turning points and branch multiplicity (a lower branch and upper branch) or points
where the solution branches terminate. On the other hand our averaged models show
the continuing existence of solitary waves for all Reynolds numbers. The HF averaged
models in particular show the existence of both positive- and negative-hump solitary
waves unlike the ST ones which only yield positive-hump waves. The averaged models are
also robust in time-dependent computations. These computations reveal that sufficiently
large Péclet numbers bring about an organization of the free surface which otherwise
exhibits a complex spatio-temporal dynamics reminiscent of the KS chaos.

Subsequently we compared the interfacial temperature distribution obtained from our
averaged models to that obtained from the full (first order in ǫ) energy equation. The
single-mode Galerkin projections are in good agreement with the actual solution and pro-
vide a substantial improvement for the interfacial temperature over the simple weighted
residuals models as the Reynolds number increases. The agreement persists up to a cer-
tain Reynolds number at which point a recirculation zone appears in the primary solitary
hump. Further increase of the Reynolds number leads to the development of a thermal
boundary layer at the front stagnation point that results in an increased deviation from
the actual interfacial temperature but at a rate slower to that observed for the simple
weighted residuals models which diverge first.

Eventually all models predict negative interfacial temperatures at some Reynolds num-
ber. This deficiency was attributed to the coefficient of interfacial temperature derivative
with respect to the moving coordinate going through zero and was cured with the intro-
duction of modified weight functions prior to averaging. The resulting modified averaged
models prevent the interfacial temperature from going negative and showed a marked
improvement over the previous averaged models. Nevertheless, the modified models also
deviate from the full energy equation again due to the presence of the boundary layer.

The recirculation zone below a primary solitary hump is physical and does not inval-
idate the long-wave assumption which forms the basis of any boundary-layer approxi-
mation. It is the thermal boundary layer at the front stagnation point connected with
large gradients of the interfacial temperature which is not allowed within the long-wave
framework. Therefore, thermal boundary layers are signs of the breakdown of the theory
presented here. However, it is quite likely that the 2D flow cannot sustain a sharp bound-
ary layer and will attempt to diffuse it in the transverse direction with a development
of a 3D instability. The system then naturally relaxes the strong gradients of interfacial
temperature.
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Appendix A. Large-Péclet-number LWE solutions

The temperature field is given by

HF: T = [1 +B(h− y)]F − PeBwBF
2hxy
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ST: T = (1 + B̂(h− y))F̂ − PeB̂F̂ 2hxy
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where

F = (B +Bw +BBwh)
−1 and F̂ = (1 + B̂h)−1.

Notice that setting h = 1 in F and F̂ yields the definitions of F and F̂ in § 3. By taking
the leading order terms from the limit of infinite Bw, THF = (1/Bw)TST. Returning to
dimensional variables, (T−Ta)/(q0l0/λ) = (1/Biw)(T−Ta)/(Tw−Ta) or q0 = αw(Tw−Ta)
as expected since in the limit Bw → ∞ the ST and HF problems are identical (see § 2.3).

The streamfunction is given by

HF: ψ = (1 +Wehxxx − hx cotβ)(3h− y)
y2

6
+
Re

40
(20h3 − 5hy2 + y3)hhxy

2

+
M

2
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2hxy
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Pe

80
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(

Gh3hx

)

x
y2. (A 2)

For ST the streamfunction is given by (A 2) with (G,MBwBF
2,MB) → (Ĝ, M̂B̂F̂ 2, M̂B̂).

The functionals G and Ĝ are due to the convective heat transport effects and are given
by

G = 7(4 +Bwh)F
2 + (32B − 22B2

wh− 48Bw)F 3 and Ĝ = (7B̂h− 15)hF̂ 3.

In the limit of infinite Bw, BwF → F̂ and BwG → Ĝ. It is also useful to examine the
limit of very thin films, i.e. h̄N → 0. The convective functionals yield

Gh̄2
N → 20

(3Bi−Biw)

(Bi+Biw)3
+ O(h̄N) and Ĝ→ −15h+ O(h̄N)

which shows that in this limit Ĝ < 0 whilst G ≷ 0 for Biw/Bi ≶ 3.
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Appendix B. The GHF[1] and GST[1] models

The GHF[1] model consists of (5.1c), (5.4) and the following equation for θ:
[
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The GST[1] model consists of (5.1c), (5.4) and the following equation for θ:
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Appendix C. Analysis of linearized traveling wave equations

Analyzing the linearized wave equations allows the derivation of necessary conditions
for the existence of solitary waves and sufficient conditions for their non-existence.

C.1. LWE

The limit point where the long-wave solution branch terminates in figure 3(a) can be
explained by examining a linearized form of the corresponding long-wave equation. Sub-
stituting h = 1 + ĥ exp(ΛZ) into the LWE-HF traveling wave model and linearizing for

ĥ≪ 1 yields

Λ3 + 3CΛ2 + 3AΛ + 3(1 − c) = 0. (C 1)

When all the roots Λ have real parts of the same sign it is impossible for solitary wave
solutions of the LWE-SHF traveling wave model to exist. Consider now a cubic equation
of the form general z3 +a2z

2 +a1z+a0 = 0. When a0 = a2a1 the cubic can be expressed
as (z + a2)(z

2 + a1) = 0. Thus, if a1 > 0 then the cubic has two purely imaginary roots.
Returning to equation (C 1), a pair of purely imaginary roots exists at c = c∗ (Hopf
bifurcation) where

c∗ = 1 − 3AC (C 2)

with A > 0 (we require A > 0 for Re > Rec). We note that (C 1) has a zero root when
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c = 1 which is the kinematic wave velocity. A sufficient and necessary condition now
for positive solitary waves not to exist is c 6 c∗. At the point where the solitary wave
solution branch in figure 3(a) terminates we have c = c∗.

When C > 0 a pair of purely imaginary roots only exists when c = c∗ < 1, i.e. for
negative solitary waves. Similarly, when C < 0 then a pair of purely imaginary roots only
exists when c = c∗ > 1, i.e. for positive solitary waves. Two necessary conditions for
positive solitary waves to exist are c > 1 and c > c∗.

C.2. SHF and SST

Substitution of h = 1 + ĥ exp(ΛZ) and θ = F + θ̂ exp(ΛZ) into the SHF traveling wave

model and linearizing for ĥ, θ̂ ≪ 1 yields
[
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For SST, (C 4) is replaced by
(
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B̂ĥ+

[

1

F̂
+

(

3

20
−
c

3

)

PrδΛ

]

θ̂

F̂
= 0. (C 5)

By eliminating ĥ and θ̂, we obtain a quartic dispersion relation for both SHF and SST,
of the form z4 + a3z

3 + a2z
2 + a1z + a0 = 0. Sufficient and necessary conditions for all

roots of this polynomial to have negative real parts can be obtained with an extension
of the Routh-Hurwitz theorem (Strelitz 1977). For a quartic the result is a3 > 0, a2 > 0,
0 < a1 < a2a3 and 0 < a0 < (a1a2a3 − a2

1)/a
2
3. With z → −z, we can then obtain the

sufficient and necessary conditions for all roots to have positive real parts. By simply
changing the sign of a1 and a3 in the previous conditions, the new conditions are a3 < 0,
a2 > 0, a2a3 < a1 < 0 and 0 < a0 < (a1a2a3 − a2

1)/a
2
3. These two sets of inequalities

define two regions, say R1 and R2 in the fourth-dimensional space {a0, a1, a2, a3}. In
R1

⋃

R2 all roots have real parts of the same sign and hence it is impossible for solitary
waves to exist there. Hence, a necessary condition for solitary waves to exist is that the
roots lie outside R1

⋃

R2.

Appendix D. Modified traveling wave models

The coefficient of the interfacial temperature derivative with respect to the traveling

wave coordinate z = x− ct in the single-mode Galerkin projection is given by
∫ 1

0
(u(0) −

c)φ2
1dη. As the interfacial waves become larger, the flow becomes faster so that the term

u(0) − c which is strictly negative for small amplitude waves, passes through zero and
becomes positive. Note that in the absence of Marangoni effects u(0) = c on the interface
when h = 3 − (2/c) which marks the location of the stagnation points for the largest

solitary waves; see also § 8.1. Hence, as the height of the waves increases,
∫ 1

0
(u(0)−c)φ2

1dη
can in fact change sign and become positive. Note that as we pointed out in § 8.1 the
condition u(0) = c does not violate the long-wave approximation.

To alleviate the difficulties associated with a zero coefficient we appropriately modify
our projection approach. More specifically, we introduce the weight function

w1 = (u(0) − c)φ1
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so that the coefficient of θZ becomes
∫ 1

0
(u(0) − c)2φ2

1dη which is non-negative. Hence, by
multiplying the weight function in GST[1] by (u − c) we obtain the ‘modified GST[1]’
model which we denote by MGST[1]:

0 =

(

5287

144
+

45

4
B̂h+

161

144
B̂2h2

)

(3c− 1)2θ′−

(

8215

144
+

1021

72
B̂h+

163

144
B̂2h2

)

(3c− 1)chθ′

+

(

665

24
+

175

24
B̂h+

2

3
B̂2h2

)

c2h2θ′+

(

301

192
ch−

61

6
(3c− 1)

)

(θ − 1)ch′+
101θ− 2

96
c2h2B̂h′

+

[(

45

8
+

161

144
B̂h

)

(3c− 1)2 +

(

11

64
ch−

41

36
(3c− 1)

)

B̂ch2

]

B̂θh′

+
11

8Prδh
(θF̂−1 − 1)[(149 + 23B̂h)(1 − 3c) + (111 + 13B̂h)ch]. (D 1)

Similarly, by multiplying the weight function in SST by (u − c) and using integration
by parts in a similar way to the derivation of SST, we obtain the ‘modified SST’ model
which we denote by MSST:

0 =

(

29

20
(3c− 1)2 +

12

5
(1 − 3c)ch+

27

20
c2h2

)

θ′ +

(

19(1 − 3c) +
2231

40
ch

)

(θ − 1)ch′

+
7

6Prδh
(θF̂−1 − 1)(1 − 3c+ ch). (D 2)

The time-dependent analogues of these models can be obtained by multiplying the
energy equation with θt + u(0)θx prior to averaging. The resulting averaged equations
involve θ2t , θ2x and θtθx. For example, the ST model is of the form

a1θ
2
t + a2

q

h
θtθx + a3

q2

h2
θ2x +

q

h2
θx (qx [a4 + a5θ] + a6qhxθ)

+
θt

h
(qx [a7 + a8θ] + a9qhxθ) +

θF̂−1 − 1

Peh2

(

a10θt + a11
q

h
θx

)

= 0,

with ai = ai(h; B̂).
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