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In a previous work, two-dimensional film flows were modelled using a weighted-residual
approach that led to a four-equation model consistent at order ε2. A two-equation model
resulted from a subsequent simplification but at the cost of lowering the degree of the
approximation to order ε only (Ruyer-Quil & Manneville 2000). A Padé approximant
technique is applied here to derive a refined two-equation model consistent at order ε2.
This model, formulated in terms of coupled evolution equations for the film thickness h
and the flow rate q, accounts for inertia effects due to the deviations of the velocity profile
from the parabolic shape, and closely sticks to the asymptotic long-wave expansion in
the appropriate limit. Comparisons of two-dimensional wave properties with experiments
and direct numerical simulations show good agreement for the range of parameters where
a two-dimensional wavy motion is reported in experiments.

The stability of two-dimensional travelling waves against three-dimensional perturba-
tions is investigated based on the extension of the models to include spanwise depen-
dence. The secondary instability is found to be not much selective, which explains the
widespread presence of the synchronous instability observed in the experiments by Liu
et al. (1995) whereas Floquet analysis predicts a subharmonic scenario in most cases.
Three-dimensional wave patterns are next computed assuming periodic boundary con-
ditions. Transition from 2D to 3D flows is shown to be strongly dependent on initial
conditions. The herringbone patterns, the synchronously deformed fronts and the three-
dimensional solitary waves observed in experiments (Liu et al. 1995; Park & Nosoko 2003;
Alekseenko et al. 1994) are recovered using our regularised model, which is found to be
an excellent compromise between the complete model, which has seven equations, and
the simplified model, which does not include the second-order inertia corrections. Those
corrections are found to play a role in the selection of the type of secondary instability
as well as of the spanwise wavelength of the emerging pattern.

1. Introduction

Thin films flowing down inclines have a rich dynamics extensively studied for a long
time since Kapitza’s experimental and theoretical pioneering work at the end of the
forties (Kapitza 1948; Kapitza & Kapitza 1949). Most of the experimental studies devoted
to this problem are referred to in the book by Alekseenko et al. (1994). More recent
experimental results are presented for example in Nosoko et al. (1996), Vlachogiannis
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& Bontozoglou (2001), Park & Nosoko (2003), Nosoko & Miyara (2004), or Argyriadi
et al. (2004). At Haverford, Gollub and coworkers have performed an extensive study of
water-glycerin mixtures flowing down weakly inclined planes, see Liu & Gollub (1993),
Liu et al. (1993), Liu & Gollub (1994), and Liu et al. (1995). Controlling the entrance
flow rate, they applied a periodic forcing at the inlet and observed the response of the film
at given frequency. Their experiments give the clearest picture of the phenomenology of
waves on film flows. At frequencies close but below the cut-off frequency fc, the primary
instability gives rise to saturated two-dimensional waves.† These waves are slow and
present wide bumpy crests and deep thin troughs. They belong to the γ1 family in
the terminology introduced by Chang et al. (1993). At low frequencies, large amplitude
solitary waves in the form of fast humps preceded by small capillary ripples emerge from
the inception region. Such waves belong to the γ2 family. By identifying the different
secondary instabilities of the saturated 2D waves leading to disorder, the observations of
the Haverford group complete the review by Chang (1994).

The purpose of this paper is to propose an accurate modelling able to account for the
experiments by Liu et al. (1995) and ultimately get a unified theoretical understanding
of the experimental data available in the literature. The separation of scales implied by
the long-wave character of the instability allows one to define a small parameter ε, called
the film parameter , basically measuring the slope of the interface in order of magnitude,
and to apply Prandtl’s simplification of the cross-stream momentum equation, usual in
boundary layer theory, which helps one to get rid of the in-depth pressure distribution
dominated here by surface tension and gravity. This leads to so-called boundary-layer
equations, see Chang et al. (1993) for a detailed presentation. These equations can be
viewed as the first step of the long-wave expansion performed by Benney (1966). Modu-
lations of the film thickness around the flat film solution being slow in space and time,
the product of the film parameter ε and the Reynolds number R is small as in classical
lubrication theory. Inertia is thus small and consequently the velocity field stays enslaved
to the film thickness. This leads to a single evolution equation for the film thickness h
governing the dynamics of the flow at the onset of the instability. Several one-equation
models have therefore been proposed to investigate the 3D dynamics of film flows (Roskes
1969; Atherton & Homsy 1976; Roy et al. 2002; Saprykin et al. 2005). However, for the
range of Reynolds numbers where 3D wavy regimes have been reported by Liu et al.

(1995); Park & Nosoko (2003), one-equation models have been shown to fail, leading
either to an underestimation of the wave speeds and heights, or exhibiting unphysical
behaviours (Pumir et al. 1983; Ooshida 1999; Scheid et al. 2005b).

An alternative to the gradient expansion approach is to make use of the Kármán–
Polhausen averaging technique as in boundary-layer theory (Schlichting 1955). This tech-
nique, which was first proposed by Kapitza (1948) and later re-investigated by Shkadov
(1967), leads to a two-field model involving the film thickness h and the local flow rate
q, for which the velocity field is not supposed to be entirely enslaved to the film thick-
ness. In both cases, a reduction of the dimensionality of the basic equations is achieved
through the elimination of the cross-stream coordinate. The transition of film flows to-
wards 3D dynamics was first theoretically investigated in this context by Trifonov (1989).
Starting from 2D solutions to the Kapitza–Shkadov model computed at rest in a moving
frame, he analysed their stability against transverse modulations and showed that the

† Two vs. three dimensional refer to the fluid velocity dependence. Two dimensional flow
means spanwise independent (coordinates x and y) while the surface elevation is one-dimen-
sionally modulated (along x). On the other hand, full three dimensional flow (x, y, z) involves
two-dimensional thickness modulations (x, z).
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subharmonic instability was always the most dangerous one. The stationary 3D waves
bifurcating from the 2D waves of the γ1 family were shown to have transverse modula-
tions with troughs that deepen faster than the peaks grow, which eventually produced
trains of isolated depressions, as experimentally observed by Liu et al. (1995). Chang
et al. (1994) attempted to complete Trifonov’s study by using the boundary layer equa-
tions. Their stability analysis of the γ1 family predicted only the subharmonic instability,
hence a scenario different from the one reported by Liu and Gollub, i.e. not accounting
for the presence of the synchronous mode. Trifonov and Chang et al. both only considered
vertical walls whereas the experiments at Haverford were performed for an inclined wall
where hydrostatic pressure plays a significant role. To our knowledge, there is as yet no
thorough theoretical understanding of the full experimental results and especially of the
3D synchronous instability of the slow saturated γ1 waves.

The basic set of equations and boundary conditions governing the problem is given in
§2.1, followed by a presentation of the boundary layer approximation in §2.2. From §3
to §5, 2D flows are considered, whereas 3D flows are investigated in §6 to §8. Section 3
is devoted to a short presentation of the regularisation method introduced by Ooshida
(1999) to film flows. In section 4, we start discussing our previous extension (Ruyer-
Quil & Manneville 2000) of Shkadov’s approach (Shkadov 1967) (§4.1). An adiabatic
elimination of velocity corrections (§4.2 and §4.3) is next followed by an algebraic Padé-
like approach (§4.4) aiming at a model accurate at order ε2 that does not suffer from
previous limitations. The quantitative validation of the models in the 2D wavy regime
is considered in Section 5. In section 6, we extend to 3D flow our models. In section 7,
we develop a standard Floquet stability analysis of the γ1 waves corresponding to the
experiments by Liu et al. (1995). Section 8 is dedicated to the numerical simulations
of the models and a comparison with various experimental data existing in literature.
We first concentrate on the selection of the different 3D wave patterns resulting from
the streamwise periodic forcing of γ1 waves reported by Liu et al. (1995) (§8.1). The
sensitivity to initial conditions is discussed and the results of the different models are
compared. We next use the regularised model to study the 3D instability of γ2 waves
corresponding to the experimental work by Park & Nosoko (2003) in §8.2. Finally, the
development of natural (i.e. noise-driven) 3D waves is investigated, from 2D wave-trains
to 3D solitary waves, and compared to the experimental data by Alekseenko et al. (1994)
in §8.3. Concluding remarks and perspectives are presented in section 9.

2. Governing equations

2.1. Primitive equations

The flow of a Newtonian liquid down a plane making an angle β with the horizontal is
considered. Coordinate x defines the streamwise direction, y denotes the direction normal
to the plane, and z is along the spanwise direction (unit vectors i, j,k respectively).
u ≡ u i + v j + w k is the velocity field and p is the pressure. Surface tension σ, viscosity
µ, density ρ, are supposed to remain constant. The dimensionless form of the governing
equations is obtained with length and time scales based on the kinematic viscosity ν =
µ/ρ and the streamwise gravity acceleration g sin β so that they depend only on the
physical properties of the fluid and the inclination angle. They read:

lν = ν2/3(g sinβ)−1/3 and tν = ν1/3(g sin β)−2/3.

This scaling is appropriate provided that sin β ∼ O(1), i.e. excluding near-horizontal
configurations, for which instabilities that set in are typical of wall flows, involving
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Tollmien–Schlichting waves of shear-viscous origin, see e.g. Floryan et al. (1987). The
flow conditions can further be characterised by the dimensionless thickness of the flat
film solution (Nusselt flow), hN, the inclination B = cot β and the Kapitza number
Γ = σ

/ [

ρν4/3(g sinβ)1/3
]

which compares the surface stress σ/lν to the viscous stress
µ/tν . Using these scales, the Navier-Stokes equation reads:

∂tu + u · ∇u = i− Bj −∇p + ∇2u . (2.1)

Above and in the following, ∂α denotes partial differentiation with respect to variable α.
The continuity equation for an incompressible flow reads:

∇ · u = 0 . (2.2)

The evolution equations have to be supplemented with boundary conditions at the bot-
tom plane, y = 0, and at the free surface, y = h. A quantity β evaluated at y = ỹ will be
denoted by β|ỹ . The flow is thus subjected to the usual no-slip condition:

u|0 = 0 . (2.3)

The interface is governed by the kinematic condition expressing that the free surface is
a material surface, that is

(∂t + u · ∇)(h(x, z, t) − y) = 0 ,

or else

v|h = (∂t + u|h∂x + w|h∂z)h . (2.4)

Finally, the stress balance at the interface reads:

−pn + (∇u + ∇uT ) · n = −Γ(∇ · n)n , (2.5)

where n is the unit vector normal to the free surface oriented outwards.
Alternatively, Reynolds and Weber numbers based on the entrance flow rate are often

preferred though they do not clearly separate flow conditions from the fluid’s physical
constants. The relations between these dimensionless parameters are easily obtained by
noticing that, at the entrance, the interface is flat so that the Reynolds number is related
to the dimensionless Nusselt thickness hN through an integration of the parabolic velocity
profile u ≡ y

(

hN − 1
2y2

)

over the depth. This gives:

R ≡ qN = 1
3hN

3 , (2.6)

where qN is the dimensionless Nusselt flow rate. Similarly, the Weber number is related
to the Kapitza number through

W = ΓhN
−2 . (2.7)

2.2. Lubrication approximation and Shkadov’s scaling

Considering slow space and time variation, the formal parameter ε is introduced along
with each derivation in space or time ∂x,z,t ∝ ε. The assumed slow space variation
implies that the velocity component normal to the plane v is much smaller than the
streamwise and spanwise components u and w as derived from the continuity equation
(2.2). Consequently, the inertia terms in the y-component of the momentum equation
are of higher order and can be dropped out. The remaining equation is then linear and
can be integrated to give the pressure distribution up to order ε. After substitution of
the latter and some algebra detailed in Ruyer-Quil & Manneville (1998), approximated
streamwise and spanwise momentum equations are obtained.

At this stage it is convenient to proceed to the rescaling of space variables introduced
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by Shkadov (1977). At a given inlet flow rate, the natural scale for y is the Nusselt flat
film thickness hN, which yields the changes (y, h) = (hNỹ, hNh̃). Then balancing gravity
forces and surface tension introduces the scale ratio κ = (Γ/h2

N)1/3 ≡ W 1/3. Shkadov
proceeded therefore to a compression of the streamwise and spanwise coordinates and
took the scale for x and z as κ times the scale for y, hence the changes x = κhNx̃ and
z = κhNz̃. Scaling time as t = (κ/hN)t̃ and velocity components as u = h2

Nũ, w = h2
Nw̃

and v = (h2
N/κ)ṽ, dropping tildes, the rescaled streamwise momentum equation reads

δ
[

∂tu + ∂x(u2) + ∂y(uv) + ∂z(uw)
]

= 1 + ∂yyu − ζ ∂xh + ∂xxxh + ∂xzzh

+η
[

2∂xxu + ∂zzu + ∂xzw − ∂x(∂yv
∣

∣

h
)
]

, (2.8)

where

δ = h3
N/κ = 3R W−1/3 (2.9)

is a reduced Reynolds number. The two other reduced parameters

ζ = B/κ = cot β W−1/3 and η = κ−2 = W−2/3 (2.10)

respectively measure the effect of the gravity component normal to the plane and the
viscous second-order effects. The reduced Reynolds number introduced by Shkadov was
δ/45; the present choice is preferred since it leaves all numerical coefficients in the equa-
tions unchanged.

Except for the presence in (2.8) of the gravity term scaled to unity, the streamwise
and spanwise momentum equations are symmetric under the exchange {u ↔ w, x ↔ z}.
The rescaling of our set of equations leave the no-slip condition (2.3) and the kinematic
condition (2.4) unchanged, whereas the stress balance at the free surface and in the x
direction now reads at O(ε2)

∂yu = η [∂zh(∂zu + ∂xw) + 2∂xh(2∂xu + ∂zw) − ∂xv] at y = h . (2.11)

The set of boundary conditions is then closed by the stress balance in the z direction
yielded from (2.11) through the exchange {u ↔ w, x ↔ z}. The obtained set of equations
is usually referred as the second-order boundary-layer equations since the assumptions
leading to it are essentially the same as those in the derivation of the Prandtl equation
of boundary layer theory, see Schlichting (1955). Within our basic assumptions, they are
consistent at order ε2.

The set of reduced parameters δ, ζ and η is formally equivalent to the set R, B and
W (or hN, B, Γ). An advantage of Shkadov’s scaling is that it gathers all second-order
viscous terms under the sole parameter η. Since these terms are the only physical ones of
order ε2 in equations (2.8,2.11), the truncation of the boundary-layer equations at first
order leaves δ as the only parameter provided that the wall is vertical (ζ = 0), as was
the case in many studies.

3. One equation reduction and Padé-like regularisation

Comparisons between existing models and the subsequent discussion about needed
improvements can be made simpler if the spanwise dependence of the fields is disregarded.
Accordingly, from this section up to § 6, we focus on 2D flows (∂z ≡ 0, w ≡ 0).

A gradient expansion of the basic equations or the boundary-layer equations leads
to identical results up to order ε2. Such an expansion of the basic equations was first
done by Benney (1966) and next completed by Lin (1974) and Nakaya (1975). Benney
showed that the velocity field u can be written as a series of polynomials in y, i.e.

u =
∑

n An(h)Pn(y), where the coefficients An are functions of the thickness h and its
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space-time derivatives, which means that, in this limit, the velocity field is completely
enslaved to the dynamics of h. Integration of the continuity equation across the layer
leads to the exact mass balance equation:

∂th + ∂xq = 0 , (3.1)

where q =
∫ h

0
u dy is the local flow rate. The gradient expansion of the momentum balance

equation next gives an approximate expression for the flow rate as function of h and its
derivatives. This expression can be further simplified by using the zeroth-order relation
q(0) = 1

3h3 to exchange the time derivative of h against its space derivative through:

∂th = −h2∂xh , (3.2)

which is the equation governing kinematic waves at the interface (Whitham 1974). Gjevik
thus studied the following equation (Gjevik 1970, 1971):

∂th + 1
3∂x

{

h3 + 2
35δ∂x(h7) − 1

4ζ∂x(h4) + h3∂xxxh
}

= 0 . (3.3)

generally called the Benney equation.
The relevance of this equation beyond a narrow neighbourhood of the threshold is

first limited by the fact that linear stability properties of the flat film solution rapidly
depart from those derived from the exact Orr-Sommerfeld (OS) equation, i.e. the range
of unstable wave numbers predicted by (3.3) is much wider than that emerging from
the solution of the OS equation. This first limitation seems related to the neglect of
the second-order streamwise dissipative terms as shown by Panga & Balakotaiah (2003).
Keeping only them into account, Panga & Balakotaiah obtained an equation which,
within current scalings, reads:

∂th + 1
3∂x

{

h3 − 1
8δ ∂t(h

5) − 9
280δ∂x(h7) − 1

4ζ∂x(h4) + h3∂xxxh

+η
[

3h4∂xxh + 7h3(∂xh)2
]}

= 0 . (3.4)

Panga & Balakotaiah avoided the exchange of the time and space derivatives through
(3.2) and showed that the exact OS results are then recovered with better accuracy.
Unfortunately, this correction does not cure the second well known limitation of the
Benney equation (3.3), that is, the existence of finite-time blow up of its solutions beyond
some limiting value of the Reynolds number not far beyond threshold (Pumir et al.

1983; Scheid et al. 2005b) since (3.4) also suffers from finite-time blow up of solutions
somewhat beyond threshold (Ruyer-Quil & Manneville 2004). Pumir et al. (1983) showed
in particular that the finite-time blow-up of time-dependent solutions closely corresponds
to the loss of one-hump solitary waves, i.e. homoclinic orbits in the terminology of the
dynamical systems theory. Our experience with similar but more complicated equations
(Ruyer-Quil 1999) suggests us that such a loss of what is called the ‘principal homoclinic
orbit’ by Glendinning & Sparrow (1984) is accompanied with a blow-up of time-dependent
solutions.

In order to remedy this deficiency, Ooshida (1999) developed a resummation method
inspired from the Padé approximant technique. The latter relies on the idea that the
divergence of a power series Q =

∑

k Qkxk is due to the hidden presence of poles. This
leads one to express Q in an approximate way as a ratio F/G of polynomials F and G
where the zeros of G are supposed to capture the causes of the divergence. Adjusting the
coefficients introduced in F = F0+F1x+F2x

2 . . . and G = 1+G1x+G2x
2+. . . so that the

terms in the series Q are reproduced exactly up to some given degree is the essence of the
approximation, the ratio F/G being used in place of Q. In this algebraic implementation,
the degrees of the polynomials F and G are open to free choice, the number of coefficients
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to be determined remaining compatible with the number of coefficients available in the
series Q.

Ooshida translated this idea to the present case by introducing a regularisation opera-
tor G = I +G(1) +G(2), where I is the identity, G(1) = G(1)(h)∂x, and G(2) = G(2)(h)∂xx,
so that the expansion of q as a function of h and its derivatives from the long-wave
expansion, formally written as q ≡ Q(h), is rewritten as G−1F . Ooshida chose to adjust
“coefficients” G(1) and G(2) in G so that GQ = F could be reduced to q(0) + F (1), i.e.

F (2) ≡ 0, which yielded:

G = 1 − 10
21δh4∂x − ηh2∂xx .

Computation of the regularised identity ∂x(GQ) ≡ ∂xF with the replacement of ∂xQ by
−∂th using (3.1) led him to the equation:

∂th+ 1
3∂x

{

h3 − 3η h2∂xth − 2
7δ ∂t(h

5) − 36
245δ∂x(h7) − 1

4ζ∂x(h4) + h3∂xxxh
}

= 0 . (3.5)

Ooshida’s formulation remedies the possible blow-up of time dependent solutions ob-
served with (3.3) but (3.5) grossly underestimates the amplitudes and speeds of the
solitary waves. Panga et al. (2005) further attempted to apply Ooshida’s idea to regu-
larise equation (3.4) which led them to an expression of q as function of h and ∂tq, which
can be recast as an evolution equation for q:

δ ∂tq = 8
5h− 24

5

q

h2
− 9

25δh4∂xh− 8
5ζh∂xh+ 8

5h∂xxxh+ η
[

56
5 h(∂xh)2 + 24

5 h2∂xxh
]

. (3.6)

Equation (3.6) must be completed by the mass conservation equation (3.1) and is referred
hereafter as the PMB model. As a consequence, the flow rate q is no longer slaved to the
evolution of the thickness h which indicates that q must be recognised as an independent
degree of freedom (Balakotaiah & Mudunuri 2004).

Once it is recognised that some freedom should be given back to the velocity field, this
idea should be implemented from the beginning, which calls for a different approach if we
want an accurate modelling in the largest possible range of Reynolds numbers and not
only in the neighbourhood of the instability threshold, i.e. also in what Ooshida called
the ‘drag-inertia’ regime that takes place when inertia plays a more significant role at
large δ, as opposed to the ‘drag-gravity’ regime taking place at small δ and corresponding
to a balance between viscous drag on the wall and gravity acceleration, for which the
classical long-wave expansion is expected to be valid.

4. Weighted residual modelling

4.1. General formulation

The difficulty with a modelling in terms of a single equation, is that keeping a single
dependent variable, namely h, is not enough to account for the dynamics of the film,
though the perturbations may well stay long-wave. At every step of the asymptotic
expansion, the velocity profile is assumed to have no dynamics for its own but to be
strictly enslaved to h by equations where the time dependence only comes through that
of h. This is justified only as long as the evolution rate of velocity modes, of order unity
due to the viscous damping over the thickness, can be considered as large when compared
to the evolution rate of h, of order ε. Beyond threshold (ε finite) this assumption fails,
which can be interpreted as the sign of a revolt of enslaved degrees of freedom. The
dynamics of the flow can then no longer be described through the evolution of a single
field for the film thickness and other variables must be considered, e.g. the local flow rate
q, the stress at the wall, etc.
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This discrepancy motivated two of us to re-investigate Shkadov’s approach (Shkadov
1967) and pursue his original suggestion of expanding the velocity field on a polynomial
basis (Ruyer-Quil & Manneville 2000). The first term of this expansion was taken to
be g0(y) = y − 1

2y2, the flat film parabolic velocity profile. We showed that first-order
corrections to the parabolic velocity distribution could be described entirely with the
help of only two more polynomials of degree four and six, g1 and g2, the definition of
which are given in appendix A. We next proceeded to a Galerkin projection retaining
terms up to order ε2 included. Writing formally the streamwise momentum balance as

BL(u) = 0, the residuals read Ri(u) = 〈BL(u), gi(y)〉, where 〈f, g〉 =
∫ h

0 f g dy refers
to the scalar product deriving from the plain L2 norm. Setting the three residuals Ri(u)
to zero formed a system of three evolution equations for the three unknowns q, r and s,
whose extension to the 3D case is given in appendix C as (C 1). System (C 1) is completed
with the mass balance (3.1), and refereed hereafter as the complete second-order model.

The theoretical analysis and the numerical integration of models such as the complete
model are indeed simpler than the corresponding study of the full Navier–Stokes prob-
lem, or even of the boundary-layer formulation. Handling the four fields of (3.1, C 1)
still remains a difficult task, and a reliable two-field formulation consistent at order ε2

would be welcome. At this stage setting r and s to zero in R0 lowers the order of the
approximation. This procedure leads to a simplified averaged momentum equation

δ ∂tq =
5

6
h −

5

2

q

h2
+ δ

[

9

7

q2

h2
∂xh −

17

7

q

h
∂xq

]

−
5

6
ζh∂xh +

5

6
h∂xxxh

+η

[

4
q

h2
(∂xh)2 −

9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

]

. (4.1)

The set of equations to be solved is next closed by the mass conservation equation (3.1).
Our simplified model was shown to predict the correct linear stability threshold. However,
contrary to the gradient expansion of the complete model, the gradient expansion of (4.1)
failed to reproduce the exact expression of the flow rate q as function of h at order ε2. As
a matter of fact, results differ only through the coefficient of the first inertia term that
reads 212

525 instead of the exact value 127
315 (Ruyer-Quil & Manneville 2000). One should

not be fooled by the apparent smallness of the differences between these coefficients. As
shown in the next subsection, if small numerical coefficients are associated to the second-
order inertia terms, they contain nonlinearities of high order, the effects of which become
noticeable for δ of order unity or higher.

We develop below a consistent elimination strategy of r and s aiming at a two-equation
model with an exact account of the gradient expansion up to order ε2.

4.2. Reduction of the full second order model

A simple argument can be given here to justify the pertinence of the elimination of
the corrections to the parabolic velocity distribution, r and s. Since viscosity acts so
as to ensure the in-depth coherence of the flow, fluctuations of the flow field varying
rapidly in the wall-normal direction are efficiently damped by viscosity, so that r and s
corresponding to high degree polynomials, should relax rapidly towards the values forced
by the evolution of h and q. This can be observed simply by linearising system (C 1)
around the Nusselt flow in the zero wavenumber limit, that is, assuming no spatial
variations. The mass balance (3.1) thus implies a constant thickness. Writing q = 1/3+εq̃,
r = εr̃ and s = εs̃ where ε � 1, we get

δ
dṼ

dt
= MṼ , (4.2)
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where Ṽ = (q̃, r̃, s̃)t and M is a 3 × 3 matrix whose eigenvalues λi are respectively
−2.47, −22.3, and −87.7. Because of the large gap between λ1 and (λ2, λ3), it is ob-
vious that, at low Reynolds number and provided that the long-wave assumption is
valid, the dynamics of the flow is governed by the neutral mode associated to the free
surface elevation and the eigenmode corresponding to λ1, with eigenvector (q̃, r̃, s̃)t =
(1.00,−1.33 10−2, 1.38 10−4)t. Consequently and given that the associated eigenvector is
nearly aligned with the first vector of the natural basis, r and s are truly slaved to the
dynamics of the thickness h and the flow rate q, at least close to the threshold.

Having justified the elimination of r and s, let us go back to its practical implementa-
tion. Fields r and s are corrections to the flat film parabolic profile corresponding to g0.
So, they are at least first-order terms produced by the deformation of the free surface. In
the first residual R0 associated to the weight g0, r and s appear through inertia terms
involving their space and time derivatives or through products with derivatives of h and
q, which are terms of order ε2. Indeed, the corrections to the velocity field cannot appear

in R0 at lowest order since the evaluation of the viscous term
∫ h

0
g0(y/h)∂yyu dy yields

1
2∂yu|y=h − q/h2, owing to the definition of q =

∫ h

0 u dy, and that 1
2∂yu|y=h is already of

order ε2, as seen from (2.11) that expresses the stress balance at the free surface.
At this stage, it remains to determine the expression of r and s as functions of h, q and

their derivatives truncated at order ε. Such relations can easily be obtained by dropping
all second-order terms from the two last residuals R1 and R2 and then solving for r and
s. One gets :

r = δ

[

1

210
h2∂tq −

19

1925
q2∂xh +

74

5775
hq∂xq

]

+ O(ε2) , (4.3a)

s = δ

[

2

5775
q2∂xh −

2

17325
hq∂xq

]

+ O(ε2) . (4.3b)

Substitution of (4.3) into R0 finally gives

δ ∂tq =
5

6
h −

5

2

q

h2
+ δ

[

9

7

q2

h2
∂xh −

17

7

q

h
∂xq

]

+ δ2K(h, q)

+ η

[

4
q

h2
(∂xh)2 −

9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

]

−
5

6
ζh∂xh +

5

6
h∂xxxh , (4.4)

where the additional terms arising from the elimination of r and s are second order inertia
terms all gathered in K that reads:

K =
1

210
h2∂ttq −

1

105
q∂xh∂tq +

1

42
h∂xq∂tq +

17

630
hq∂xtq +

653

8085
q (∂xq)

2

−
1

105
q∂xh∂tq −

26

231

q2

h
∂xh∂xq +

386

8085
q2∂xxq +

104

2695

q3

h2
(∂xh)2 . (4.5)

4.3. Effective inertial correction terms

Obviously, these corrections are highly nonlinear. They also contain time derivatives that
are difficult to handle at least in numerical simulations. Fortunately, the zeroth-order
relation between q and h

q =
1

3
h3 , (4.6)

allows us to simplify the expression of K. Using also ∂th = −h2∂xh + O(ε2), we get the
more compact expression:

K = −
1

630
h7(∂xh)2 . (4.7)
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Figure 1. Speed c (a) and amplitude hm (b) of the principal homoclinic orbits as functions of the
reduced Reynolds number δ. The wall is vertical and streamwise viscous dissipation is omitted
(ζ = η = 0). 1: complete second-order model (3.1,C 1); 2: simplified model (3.1,4.1); 3: (3.1, 4.4)
with K given by (4.5); 4: with K given by (4.7); 5: with K given by (4.8); 6: regularised model
(3.1, 4.15); 7: PMB model (3.1, 3.6); filled squares: solutions to the first-order boundary-layer
equations after Chang et al. (1996).

The behaviour of the solutions to equation (4.4) where the inertia corrections K are
given by (4.5) or (4.7) have been tested in the drag-inertia regime by computing the
one-hump solitary-wave solutions for a vertical wall and neglecting second-order viscous
effects (η = 0) as explained at the beginning of §5. Figure 1 displays the speed and
amplitude of the solitary waves as function of the reduced Reynolds number δ. They are
compared to the solutions to the complete second-order model (3.1, C 1) as curves 1,
to the simplified model (3.1, 4.1) as curves 2, to the PMB model (3.1,3.6) as curves 7,
and to the results obtained by Chang et al. (1996) with the first-order boundary-layer
equations as filled squares.

The simplified model and the complete second-order model both exhibit unique one-
hump solitary-wave solutions at given δ and have speed in reasonable agreement with the
results of Chang et al. On the contrary, the branch of principal homoclinic solutions is
seen to turn back in the transition region between the drag-gravity and the drag-inertia
regimes (δ ∼ 1) with both expressions (4.5) and (4.7) of K (curves 3 and 4 in figure 1).
This unphysical behaviour is similar to the one encountered with the Benney equation
(3.3) and is likely to be related to the high-degree nonlinearities present in (4.5) and (4.7).
The same difficulty as in the case of surface equations arises and calls for a formulation in
which inertia effects are accurately accounted for in the widest possible range of reduced
Reynolds numbers δ.

Other forms of the second-order inertia corrections K can be obtained by using the flat-
film relation (4.6). For example, Roberts (1996) has applied a centre manifold analysis
to the problem of falling film and derived a second-order model in terms of the film
thickness h and the depth-averaged velocity equivalent to the flow rate q. His approach
relied on the linear viscous dissipating modes of the streamwise uniform film in the zero-
wavenumber limit, which is basically a reduction of the slow time and space evolution
of the film to the two first eigenmodes (h, u) ∝ (1, 0) and (h, u) ∝ (0, sin(πy/(2h))).
His model is similar to those obtained using the classical depth-averaged method with
coefficients close to those appearing in (4.4). As noticed Ooshida (1999), this agreement
can be understood from the fact that the velocity profile urob ∝ sin(πy/(2h)) is very close
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to the parabolic profile since 〈urob, g0〉/
√

〈urob, urob〉〈g0, g0〉 ≈ 0.999. Inertia corrections
obtained by Roberts read:

K =
1

100

(

−0.1961
q3

h2
(∂xh)2 − 1.78

q2

h
∂xh∂xq + 0.1226 q(∂xq)

2

−1.792
q3

h
∂xxh + 0.7778 q2∂xxq

)

. (4.8)

The results obtained with this expression of K are also displayed in figure 1 as curves 5. A
loss of solutions is once more observed at δ ≈ 2, a failure due to the fact that K is obtained
from a perturbation method which is strictly valid only in the drag-gravity regime where
inertia has a perturbative role only. Both our derivation of (4.4) with K given by (4.5) or
(4.7) are also based on perturbative techniques applied to the Nusselt flat film solution.
However, the presence of the principal homoclinic solutions to the simplified model (3.1,
4.1) for all δ shows that it should be possible to describe the drag-inertia regime at low
cost in terms of a model including the second-order inertial effects and involving h and
q only.

4.4. Padé-like regularisation

Here, we follow a procedure more closely inspired from the Padé approximant technique
than Ooshida’s, by looking for a kind of algebraic preconditioner apt to kill the dangerous
second order terms of inertia origin (in δ2). Instead of thinking in terms of an expansion of
the flow rate q, we consider the residual R0 obtained by averaging the momentum equa-

tion (2.8) with weight g0, which can be written as a series in ε, R
(0)
0 +R

(1)
0 +R

(2),η
0 +R

(2),δ
0 .

In the second-order terms of this expansion, we have isolated those having a viscous ori-
gin (superscript η) from those accounting for the convective acceleration induced by the
deviations of the velocity profile away from the parabolic shape (superscript δ). The sim-

plified equation (4.1) is recovered just by neglecting R
(2),δ
0 . So R0 is searched in the form

G−1F where G is now simply a function of h, q and their derivatives, and F is reduced

to R
(0)
0 +R

(1)
0 +R

(2),η
0 , i.e. the residual that was obtained assuming a parabolic velocity

profile. Setting F = GR0 to zero gives

δ G(h, q)

∫ h

0

g0(y/h) [∂tu + u∂xu + v∂yu] dy =

G(h, q)

∫ h

0

g0(y/h)
{

1 + ∂yyu − ζ∂xh + ∂xxxh + η
(

2∂xxu − ∂x

[

∂yv
∣

∣

h

])}

dy , (4.9)

where inertia terms isolated on the l.h.s. read:

δG

∫ h

0

g0(y/h) [∂tu + u∂xu + v∂yu] dy =

δG

{[

2

5
∂tq −

18

35

q2

h2
∂xh +

34

35

q

h
∂xq

]

−
2

5
δK

}

≡ G
{

R
(1),δ
0 + R

(2),δ
0

}

, (4.10)

which we want to identify to:

δ

[

2

5
∂tq −

18

35

q2

h2
∂xh +

34

35

q

h
∂xq

]

≡ R
(1),δ
0 . (4.11)

This leads to take the regularisation factor as:

G =

[

1 +
R

(2),δ
0

R
(1),δ
0

]

−1

. (4.12)
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An asymptotically equivalent expression of G can be found using q = h3/3 + O(ε), and
∂th = −h2∂xh + O(ε2). We then obtain:

R
(1),δ
0 = −

2

15
δh4∂xh + O(ε2) and R

(2),δ
0 =

δ2

1575
h7(∂xh)2 + O(ε3) ,

which, when substituted in (4.12), yields:

G =

[

1 −
δ

210
h3∂xh

]

−1

+ O(ε2) , (4.13)

In order to lower the degree of nonlinearities as much as possible, G is finally rewritten
in terms of the local slope ∂xh and the local Reynolds number δ q:

G =

[

1 −
δ

70
q∂xh

]

−1

. (4.14)

The resulting set of equations reads:

δ ∂tq = δ

[

9

7

q2

h2
∂xh −

17

7

q

h
∂xq

]

+

{

5

6
h −

5

2

q

h2
+ η

[

4
q

h2
(∂xh)2 −

9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

]

−
5

6
ζh∂xh +

5

6
h∂xxxh

}

×

[

1 −
δ

70
q∂xh

]

−1

, (4.15)

along with the mass balance equation (3.1).
Hereafter, the system (3.1, 4.15) will be referred to as the regularised model. Homo-

clinic orbits corresponding to one-hump solitary-wave solutions to (3.1, 4.15) have been
computed and are displayed as curves 6 in figure 1. Non-physical turn-backs of the curves
have never been observed for all the values of δ studied. Moreover, system (3.1, 4.15) is
fully consistent at second-order with the Benney expansion and takes into account mod-
ifications of the momentum balance of the film induced by the deviations of the velocity
profile from the parabolic Nusselt solution.

5. Validation

Periodic waves at rest in their moving frame ξ = x−c t, where c is the wave speed, have
been computed by continuation using Auto97†. Their characteristics are then compared
to available DNS results (Salamon et al. 1994; Ramaswamy et al. 1996; Malamataris et al.

2002) and laboratory experiments (Liu & Gollub 1994). For stationary waves, the mass
conservation equation (3.1) can be integrated once to give

q = c h + q0 , (5.1)

where q0 is an integration constant corresponding to the conservation of the flow rate in

the moving frame. Denoting by 〈·〉 = Λ−1
∫ Λ

0
(·) dξ the average operator over a wavelength

Λ in the moving frame, the constant q0 is adjusted at every step of the continuation
procedure to ensure either 〈h〉 = 1 or 〈q〉 = 1/3. The constant-thickness formulation
corresponds to the periodic-boundary conditions often used in numerical simulations,
whereas the constant-flux formulation is encountered when the spatial development of a
time periodic signal is considered (Scheid et al. 2005b).

† Auto97 and its package HomCont (Doedel et al. 1997) have been used extensively to
obtain numerical results.
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Figure 2. Travelling-wave families γ1 and γ2. Dashed lines refer to solutions to the regularised
model (3.1,4.15), whereas solid lines refer to the results from DNS [after Salamon et al. (1994)].
Left: speed c as function of the wavenumber k; right: wave profiles and streamlines in the moving
frame of reference for wave families γ1 (labels a to d) and γ2 (labels e to h).

5.1. Comparisons to direct numerical simulations

Salamon et al. (1994) have performed a systematic analysis of the two travelling-wave
branches of slow γ1 and fast γ2 solutions observed experimentally. Their numerical scheme
enforces a constant averaged thickness 〈h〉 = 1. In figure 2, we reproduce the bifurcation
diagrams in the parameter space (wavenumber k, speed c) for the largest value of the
reduced Reynolds number δ tested by these authors, δ = 2.79 (Salamon et al. 1994,
figures 15 and 17). For weak viscous diffusion η = 0.015, the γ1 family emerges from a
Hopf bifurcation of the Nusselt flat-film solution at the marginal wavenumber kc ≈ 1.02,
whereas the γ2 family bifurcates from the γ1 branch by period doubling at a wavenumber
close to kc/2. At a larger viscous diffusion η = 0.075, the situation is reversed. Compu-
tations with our regularised model (3.1,4.15) are compared to findings by Salamon et al.

in figure 2, showing excellent agreement. Wave profiles and streamlines in the moving
frame of reference are also displayed. As can be observed from the DNS by Salamon et

al. the capillary oscillations following the γ1 waves or preceding the γ2 waves are damped
by viscous diffusion (Salamon et al. 1994, figures 16 and 18).

Travelling waves obtained by DNS when a periodical forcing is simulated at inlet
correspond to the constant-flux formulation 〈q〉 = 1/3. Our results are displayed in
figure 3 together with the corresponding numerical solution obtained by Malamataris
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Figure 3. Travelling wave-train approaching solitary waves corresponding to an experiment by
Liu & Gollub (1994). The forcing frequency is f = 1.5 Hz. Parameters are β = 6.4◦, R = 19.33
and Γ = 526 (δ = 17.7, ζ = 2.72 and η = 0.093). The thin solid line stands for the numerical
computation by Malamataris et al. (2002). Results of the regularised (simplified) model corre-
spond to the thick solid (dashed) line. Solution to the complete second-order model is the dotted
line and solution to the PMB model is the dashed-dotted line.

et al. (2002) and the results from the PMB model. Parameters are those of the experiment
by Liu & Gollub (1994) with β = 6.4◦, R = 19.33, Γ = 526, and forcing frequency
f = 1.5 Hz. Results of our models are in excellent agreement with the DNS results,
predicting a wave amplitude that is slightly smaller than the one given by the Navier-
Stokes equations. The complete model gives the closest answer whereas the amplitude
of the solution to the simplified model is significantly lower. As could be expected, the
prediction of the regularised model lies somewhere in between. As far as wavelengths are
concerned, the regularised model gives a value closer to the answer given by Malamataris’
computation than the simplified and the complete second-order models. Sharing the main
characteristics of the solitary waves obtained by Ooshida, unsurprisingly, the solutions to
the PMB model (3.1,3.6) capture their properties much less faithfully than those obtained
from our regularisation procedure.

Malamataris et al. (2002) questioned the similarity assumption of a parabolic velocity
profile. They showed that significant differences could be found in the case of large solitary
waves. Deviations from the parabolic profile were mostly located at the front of the main
hump and the back of the first capillary ripple, where gradients of the film thickness
are the largest. They also proved the occurrence of a counterflow (u < 0) in the region
bracketing the thickness minimum. This feature, confirmed in the experiments by Tihon
et al. (2003), is well reproduced in our models. We have reconstructed the streamwise
velocity distributions based on expansions truncated beyond the three first polynomials
g0, g1 and g2 (see appendix A for details) at regularly spaced locations around that
minimum and for the wave-train shown in figure 3. Corresponding profiles are displayed
in figure 4 for the complete second-order model (right panels) and the regularised model
(left panels). The presence of a counterflow is recovered in both cases. The similarity
with DNS results is particularly convincing for the complete second-order model both
at the back of the first ripple and at the front of the main hump (figure 4 compared
to figure 7 in Malamataris et al. (2002); even the two inflection points they observed
are recovered). For the regularised model, comparisons remain satisfactory everywhere
except at the front of the main hump where the gradients are the largest. This implies
that a reconstruction of the velocity field based on the expressions at first order of r and
s given by (4.3) is no longer sufficient there, whereas the agreement is re-obtained as
soon as the slope of the interface is less steep.

At any rate, the streamlines in the moving frame of reference, i.e. the isocontours
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Figure 4. Streamwise velocity profile at regularly spaced locations from the front of the solitary
hump to the back of the first capillary ripple. (a) and (c): solutions to the regularised model
(3.1,4.15); (b) and (d): solutions to the complete second-order model (3.1,C 1); (e): wave profile
and streamlines corresponding to the regularised model. Extremal positions of the given velocity
profiles are indicated by dashed lines.

of the streamfunction
∫ y

0 (u − c) dy, show little difference whether the complete or the
regularised model is considered (the streamlines computed with the regularised model
are shown in figure 4e). The reason is that, at the thickness minimum where the relative
deviations away from the parabolic profile are noticeable, the streamwise velocity u is
also small, so that in a reference frame moving at the speed of the wave, the velocity
u − c stays everywhere close to that corresponding to a parabolic profile.

5.2. Comparisons to experiments

To complete the validation of our models, we present results for the speeds and amplitudes
of solitary waves corresponding to experimental conditions considered by Liu & Gollub
(1994) for an inclined plane at a fixed angle β = 8◦ using a glycerin-water mixture
(Γ = 488), and at different Reynolds numbers. The experimental findings are compared
to the corresponding travelling-wave results in figure 5. Solutions to (4.1), (4.15), and
(C 1) completed with (3.1) were obtained by varying the wavelength and imposing a
constant average flow rate 〈q〉 = 1/3. In order to obtain the γ2 branch, we proceeded
by starting from the linear threshold for a vertical film and high viscous second-order
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Figure 5. Phase speed of solitary-like wave-trains as function of their peak height as compared
to the experimental data provided by Liu & Gollub (1994) at β = 8◦, Γ = 488. (a) : for
R = 20.1, comparison to the corresponding travelling wave families computed with the complete
second-order model (3.1, C 1) (solid line), the regularised model (3.1,4.15) (dashed line), the
simplified model (3.1,4.1) (dotted line) and the PMB model (3.1,3.6) (dashed-dotted line); (b)
comparison to the solutions of the regularised model for different Reynolds numbers, R = 11.9
(1,+), 13.6 (2,×), 16.8 (3,�), 18.7 (4,�) and 20.1 (5,�).

diffusion η (or low Γ) since it is known the γ2 waves then emerge from the flat-film
solution through a Hopf bifurcation. We next adjusted the slope (β) and surface tension
(Γ) to the desired values. The γ2 branch of solutions is found to extend from high speed
to low speed, where it terminates as a negative solitary pulse. The curves have globally
a linear shape in agreement with the linear relation between maximum height and wave
speed obtained by Chang (1986) for solitary waves through a normal form analysis of the
Kuramoto–Sivasinsky equation. Both the regularised model and the complete second-
order model predict maximum heights larger than the experimental findings, which is in
agreement with the DNS of the primitive equations that also predicted larger amplitudes
than the experimental wave profiles observed by Liu and Gollub, see Ramaswamy et al.

(1996); Malamataris et al. (2002). This peculiarity can be a consequence of the neglect of
the transverse curvature of the humps, or else a slight smoothing of the wave crests linked
to the experimental measurement of the thickness. The near-perfect agreement between
experiments and the results from the simplified model (4.1) is therefore accidental. For
comparison, the results from the PMB model (3.1,3.6) are also reported in figure 5(a)
showing again less convincing agreement than with our models.

From the above comparisons, it can be concluded with some confidence that our models
predict correctly the shape, speed and maximum height of the solitary waves at least in
the range of parameters explored by Liu and Gollub.

6. Two-dimensional modelling of three-dimensional film flows

We now turn to the 3D formulation of the problem, and look for two-dimensional
equations in the streamwise (x) and spanwise (z) coordinates that mimic the full 3D
motion of the fluid. The flat film solution is a parallel flow with no spanwise component,
i.e. w = 0. A valid approach is therefore to consider w of order ε, with the meaning
that spanwise flows are triggered by the modulations of the free surface. Ruyer-Quil &
Manneville (2000) used this assumption to simplify the cumbersome system of equations
which models the 3D flow dynamics. However, considering the continuity equation (2.2),
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the least degeneracy principle suggests w be taken as an O(1) quantity like u and this is
the approach we will take below.

Following the same procedure as for the 2D case, one obtains that six fields are needed
to account for the velocity components at second order: q, r, s, the spanwise flow rate

qz =
∫ h

0 w dy, and the corrections rz and sz . For symmetry, the streamwise flow rate and
the corrections to the streamwise parabolic velocity profile are hereafter denoted by qx ≡
q, rx ≡ r and rx ≡ s. The boundary layer equations are then averaged using the Galerkin

method by writing residuals 〈Eα, gi〉 where 〈f, g〉 =
∫ h

0
f g dy, while α = x and α = z

refer to the streamwise and spanwise momentum balances, respectively. These residuals
yield a system of six evolution equations for h, qα, rα and sα completed with the mass
balance obtained through integration of (2.2) across the layer depth ∂th+∂xqx+∂zqz = 0.
The full expression of the complete model is very heavy and is provided in appendix C
as equations (C 1). First-order expressions of the four fields rα, sα are readily obtained
from the truncation at order ε of the residuals corresponding to the weights g1 and g2.
Substitution of these expressions in the first two residuals R0,α = 〈Eα, g0〉 produces

second-order inertia terms, formally written as R
(2),δ
0,α . These terms contain high-order

nonlinearities that we next kill by adjusting algebraic preconditioners. So residuals R0,α

are searched in the form G−1
α Fα where Fα correspond to the expressions of the residuals

R0,α when a parabolic velocity profile is assumed, i.e. when corrections rα and sα are
neglected. Isolating inertia terms, we thus set:

Gα

(

R
(1),δ
0,α + R

(2),δ
0,α

)

= R
(1),δ
0,α , (6.1)

where superscripts refer to first-order and second-order inertia terms. Zeroth-order ex-
pressions of the flow rates qx = h3/3 + O(ε) and qz = O(ε), i.e. the gravity-oriented
(base) flow, are next invoked to reduce the degree of nonlinearities of the regularisation

factors Gα. Consequently, the inertia terms R
(2),δ
0,z induced by deviations of the spanwise

velocity field from the parabolic profile appear asymptotically at order ε3. So that we

merely get Gz = 1 + O(ε2). Similarly, the asymptotic expression of R
(2),δ
0,x corresponds

exactly to the one obtained for a spanwise independent flow. Hence we have Gz ≡ 1 and
Gx = G given in (4.14). The three-dimensional extension of the regularised model, whose
explicit expression is given in appendix B, formally reads:

∂th = −∂xqx − ∂zqz , (6.2a)

δ ∂tqx = δ I2D
x + Gx

{

5

6
h −

5

2

qx

h2
+ δ I3D

x + η
[

D2D
x + D3D

x

]

+
5

6
h∂xP

}

, (6.2b)

δ ∂tqz = δ I2D
z −

5

2

qz

h2
+ δ I3D

z + η
[

D2D
z + D3D

z

]

+
5

6
h∂zP , (6.2c)

where I and D stand for terms of inertia and viscous diffusion origin, easily identified in
(B 1b) and (B 1c). The two terms of P = −ζh+(∂xx +∂zz)h stem from the gravitational
and capillary contributions to the pressure respectively. In (6.2b), we have also isolated
terms already present in the 2D model (superscript 2D) from those arising from the
spanwise dependence (superscript 3D). Expressions gathered under terms with subscripts
x are obtained from those with subscripts x by making the exchanges {x ↔ z}.

Equations (6.2a,6.2b,6.2c) express mass conservation, and the averaged momentum
balance in directions x and z, respectively. The viscous drag corresponds to the terms
5
2qx/h2 in (6.2b) and 5

2qz/h2 in (6.2c). As for the boundary-layer equations, gravity
contributes only to the streamwise momentum balance through the term 5

6h in (6.2b).
The regularised model (6.2) is fully consistent with the Benney expansion at second
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order, while the 3D simplified model, corresponding to the averaging of the momentum
balance equations across the layer depth assuming both parabolic velocity profiles and
weights, is not. The latter can be recovered from the former by replacing the factor Gx

by 1.†

7. Floquet Analysis

In this section, the stability of 2D waves against transverse perturbations is investigated
in the experimental conditions considered by Liu et al. (1995). Experimental profiles
indicate that the wave selected by the linear inception are of type γ1, slow waves with
deep troughs and bumped crests. Our efforts have accordingly been concentrated on the
stability analysis of the γ1 travelling waves. These waves were computed using Auto97
(Doedel et al. 1997) by continuation. The constant flux condition 〈qx〉 = 1/3 was enforced
(see §5). We started from infinitesimal sinusoidal waves at linear threshold, and increased
the period. A standard Floquet stability analysis of the wave against both streamwise
and spanwise modulations was next performed. Each unknown field X in the frame
moving with the wave ξ = x − c t, was expressed as X(ξ, z, t) = X0(ξ) + εX1(ξ, z, t)
where ε � 1 and X0 is the basic two-dimensional travelling wave. The perturbation
X1 was expanded as

∑

ϕ,kz

X̃ϕ,kz
(ξ) exp{iϕkxξ + ikzz + s t} where X̃ϕ,kz

is periodic
in ξ with period 2π/kx, kx is the wavenumber of the two-dimensional basic stationary
wave, and kz is the wavenumber of the transverse perturbation. The detuning parameter,
ϕ, is the ratio of the streamwise wavenumber of the perturbation to that of the base
state, hence ϕ ∈ [0, 1[. ϕ ∈ Q signals a subharmonic mode, especially ϕ = 1/2, and
ϕ /∈ Q an incommensurate modulated mode. Denoting X0(ξ) the vector formed by the
different components of the base state, and X̃ the vector formed by the amplitudes of
the perturbations, the linearised set of equations can be formally written as

ςX̃ = L(X0; c, q0, δ, ζ, η, ϕ, kz) X̃ , (7.1)

where L is a linear operator and ς is the complex growth rate. The maximum real
part denoted ςM

r corresponds to the fastest growing perturbation of interest from the
experimental point of view. The parameter space ϕ × kz can be reduced by invoking
two symmetries: (i) reflection in the spanwise direction, which allows us to consider
only positive kz; (ii) invariance of (7.1) under the transformation (ϕ, kz, ς , X̃) → (−ϕ,
−kz, ς?, X̃?), the star denoting complex conjugation. The parameter space ϕ × kz can
thus be limited to [0, 1

2 ] × [0,∞[. The eigenvalue problem (7.1) was solved in Fourier
space where 256 real modes have been used to represent the computed 2D waves and 128
complex modes to represent the perturbation (limited to 32 for the complete model owing
to its complexity). Eigenvalues and eigenvectors were computed using a QR algorithm
implemented on a RS/6000 IBM workstation.

Liu et al. (1995) considered a falling film of a glycerol-water mixture (ρ = 1070 kg/m3,
ν = 2.3 10−6 m2 s−1 and σ = 67 10−3 N m−1), with β = 6.4◦ and R = 56. They mea-
sured the wavelength of the 2D base state λx as well as the wavelength of the transverse
modulations λz , obtained by varying the frequency of the periodic forcing. Results of
Floquet analysis using the complete, regularised and simplified models are presented
in figure 6 using dimensional units. In line with the results discussed in section 5, the
computed wavelengths λx of γ1 waves are of the same order of magnitude as found ex-

† Notice that the simplified model formulated by Ruyer-Quil & Manneville (2000) contains
two typing mistakes in their equation (54): terms − 97

56
qx∂zqz/h and 129

56
qxqz∂zh/h2 should be

corrected to read − 8

7
qx∂zqz/h and 9

7
qxqz∂zh/h2.
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Figure 6. Streamwise wavelengths λx of 2D waves (a) and spanwise wavelengths λz (b) of the
fastest growing 3D perturbations versus the forcing frequency f , with β = 6.4◦, R = 56 and
Γ = 2002. Down triangles are experimental findings by Liu et al. (1995). Solid, dashed and
dotted lines correspond to the complete model, the regularised model (6.2) and the simplified
model, respectively. In panel (a), solid and dashed lines are nearly superposed.

perimentally, see figure 6a. Our computations also indicate relatively small variations
of λz with the frequency, which is in agreement with the results reported by Liu et al.

(see figure 6b). The transverse wavelengths of the most amplified perturbations for the
regularised and the complete models agree with each other, whereas the simplified model
predicts larger wavelengths. This points out the role of the second-order inertia terms
arising from corrections to the velocity profile in the mechanism of the 3D secondary
instability. At low frequency, λz goes to infinity so that the most amplified perturba-
tion is spanwise-uniform, while the experimental λz remains finite. Another difference
is that Floquet analysis predicts that the detuning parameter for the fastest growing
perturbation (not shown) corresponds to a subharmonic secondary instability (ϕ = 1

2 ,
chequerboard pattern) rather than to the synchronous transition (ϕ ≈ 0) reported by
Liu et al.

Figure 7(a) summarises the experimental findings by Liu et al. in the R × f plane
for the same glycerol-water mixture and with β = 4◦. Liu et al. reported two different
scenarios that are strongly reminiscent of what happens in boundary layers (Schmid &
Henningson 2001). The first one, referred to as a synchronous mode, is characterised by
wave crests deformed in phase in the spanwise direction. The second one, less commonly
observed, appears when two successive crests are deformed with a phase shift of π. This
leads to chequerboard (or herringbone) patterns characteristic of a streamwise subhar-
monic instability combined to a spanwise modulation. These two modes are reminiscent
of aligned and staggered Λ-vortices developing in transitional boundary layers, thus anal-
ogous to the type-K and type-H transitions, respectively (Herbert 1988). Corresponding
results for the stability of γ1 waves are presented in figure 7(b-d), as obtained from the
regularised model. The results for the solutions to the complete and simplified models
are very similar to those obtained with the regularised model and thus not shown. We
have computed the detuning parameter (figure 7b) and the spanwise wavenumber (fig-
ure 7c,d) of the fastest growing perturbation, with a Reynolds step of 1 and a frequency
step of 1 Hz (the lowest frequency considered is 4 Hz owing to the large number of modes
necessary to represent the solution in that case). Computations show that kz decreases
steadily as R is lowered and goes to zero in a region close to the neutral stability curve
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Figure 7. Stability of the γ1 waves against 3D modes as function of the Reynolds number R
and the frequency f for β = 4◦ and Γ = 2340 (Liu et al. 1995, figure 6). (a) Experimental
stability chart. Stability zones are bounded by thick lines : ‘2D’ where no 3D instability was
observed, ‘Sub’ for 3D subharmonic instability and ‘Syn’ for 3D synchronous instability. The
neutral stability curve is represented by a thin solid line (Orr–Sommerfeld analysis). Crosses
refer to parameter sets reported in table 1; (b) detuning parameter, where the synchronous
(Syn) and subharmonic (Sub) instability regions correspond to ϕ = 0 and 0.5, respectively. (c)
Wavenumber kz of the fastest growing transverse modulation (in cm−1); (d) enlargement of
panel (c): ‘SH’ subharmonic 2D instability (ϕ = 1

2
), ‘IM’ incommensurate modulated 2D mode

(0 < ϕ < 1

2
). Dashed lines indicate the limit (4 Hz) of the computations in panels (b, c). Results

presented in panels (b-d) have been obtained using the regularised model.

(see figure 7d). This rapid decrease of kz corresponds to the boundary separating two
and three-dimensional secondary instabilities, which agrees well with the results of Liu
et al. who reported two-dimensional flows mainly close to the threshold of the primary
instability (see figure 7a). In this small region, the γ1 waves undergo a subharmonic 2D
instability (ϕ = 1

2 ). At low frequency and large Reynolds number, the instability is also
found to be 2D (kz = 0) but corresponds to an incommensurate mode (ϕ ∈]0, 1

2 [). This
provides an indication that the frontier between two and three-dimensional flows may
exist and is not an experimental artifact due to finite-size effects. At low frequency and
large Reynolds number, Floquet stability analysis of γ1 waves predicts a 2D region wider
than reported in experiments, which can be understood if one keeps in mind that γ2
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Set R β (deg) Γ f (Hz) k c 〈h〉

1 40.0 4.0 2340 13 1.565 0.824 0.987

2 60.0 4.0 2340 13 1.494 0.689 0.970

3 42.7 4.0 2340 7 0.953 0.703 0.975

4 48.0 6.4 2002 10 0.980 0.628 0.965

Table 1. Dimensionless wavenumber k, phase speed c and averaged thickness 〈h〉 of the com-
puted γ1 waves corresponding to experimental conditions by Liu et al. (1995). Figures 7 and
11 in that reference correspond to sets #3 and #4, respectively. The constant mean flow rate
condition 〈q〉 = 1/3 was enforced. Parameters are the Reynolds number R, the inclination β,
the Kapitza number Γ and the forcing frequency f .

 1

 1.5

 2

 2.5

 3

 0  0.1  0.2  0.3  0.4  0.5

PSfrag replacements

ϕ

k
z

(c
m

−
1
)

6.66.5
7.2

7.1

7

6.9

5.1

4.8

(a) complete

 1

 1.5

 2

 2.5

 3

 0  0.1  0.2  0.3  0.4  0.5

PSfrag replacements

ϕ

k
z

(c
m

−
1
)

6.6

6.5 7.2

7.1

7

6.9

5.1

4.8

(b) regularised

 1

 1.5

 2

 2.5

 3

 0  0.1  0.2  0.3  0.4  0.5

PSfrag replacements

ϕ

k
z

(c
m

−
1
)

6.6

6.5

7.2

7.1

7

6.9

5.1
4.8

(c) simplified

Figure 8. Maximum growth rate in s−1 as function of the detuning parameter ϕ and the trans-
verse wavenumber kz in cm−1, computed with the different models for set #2 (kx = 3.2 cm−1).

waves are likely to develop in that region of the parameter plane in place of γ1 waves,
the stability of which is considered in this section.

As already mentioned, computations predict an overwhelming presence of the subhar-
monic scenario (ϕ = 1

2 ) whereas Liu et al. observed it only close to the neutral stability
curve at large frequencies and large Reynolds numbers. In fact, our computations predict
a region of synchronous 3D instability at large Reynolds numbers only using the regu-
larised model. Figure 8 shows the isocontours of the growth rate ςr of the fastest growing
perturbation in the (ϕ, kz) plane for the three models, corresponding to the set #2 of
table 1. Similar results (not shown) have been obtained with parameter set #3. Again,
the simplified model predicts longer spanwise wavelengths than both the complete and
the regularised models. Moreover, figures 8(a,b) show that ςr varies very little with the
detuning parameter ϕ. Indeed, for the complete and the regularised models, the growth
rates for ϕ = 0 and ϕ = 1

2 are close to each other so that the instability is not selective.
On the contrary, the simplified model is more selective (see figure 8c) and clearly predicts
a subharmonic instability. This result again points out the subtle role of the second-order
inertia terms in the pattern selection.

The direct correspondence between results from Floquet analysis and the experiments
is based on three assumptions. First, the γ1 waves emerge from the primary instability.
Second, a broadband white noise is assumed. As indicated by Liu et al. , the irregularities
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at the entrance section are time-independent and preferentially trigger in-phase modu-
lations of the evolving 3D patterns. Therefore experimental noise may contain a large
amount of in-phase perturbations, which may trigger the synchronous instability instead
of the subharmonic mode, given that they have growth rates close to each other. Third,
Floquet analysis assumes that 2D waves saturate before the onset of the 3D instability.
Precisely because inlet noise may contain significant spanwise perturbations, 3D insta-
bilities may arise before the saturation of the 2D waves is achieved. Such a sensitivity to
inlet conditions can only be checked by direct numerical simulations of the models.

8. Two-dimensional simulations of three-dimensional flows

In this section we perform time integrations of the complete model, the regularised
model (6.2) and the simplified model (6.2 with Gx = 1). Periodic boundary conditions
in both x and z directions are imposed. This allows us to take advantage of the good
convergence properties of spectral methods. A pseudo-spectral scheme has been devel-
oped, with derivatives evaluated in Fourier space and nonlinearities in physical space.
The time dependence is accounted for by a fifth-order Runge-Kutta scheme, which al-
lows a control of truncation errors by difference with an embedded fourth-order scheme
(Press et al. 1992). In practice, the time step is adapted to limit the relative error on each
variable to 10−4. The explicit character of the algorithm makes it easy to implement the
different models. The computational domain of size Lx ×Lz is discretized as a lattice of
M ×N regularly spaced grid points with coordinates xi = iLx/M and zj = jLz/N . The
three-dimensionality of the waves is evaluated through:

Ex(t) ≡
1

MN

N
∑

j=1





M/2−1
∑

m=1

|am(zj , t)|
2





1/2

, (8.1a)

Ez(t) ≡
1

MN

M
∑

i=1





N/2−1
∑

n=1

|bn(xi, t)|
2





1/2

, (8.1b)

where the spatial Fourier coefficients am and bn are defined by

am(z, t) =

M/2−1
∑

i=0

[h(x2i, z, t) + i h(x2i+1, z, t)] exp [2πi mi/(M/2)] , (8.1c)

bn(x, t) =

N/2−1
∑

j=0

[h(x, z2j , t) + i h(x, z2j+1, t)] exp [2πi nj/(N/2)] , (8.1d)

and where i stands for the imaginary unit. Ex and Ez are the streamwise and the spanwise
energy of deformations (Joo & Davis 1992; Press et al. 1992).

Owing to the spatial periodicity in the streamwise direction, our simulations physically
correspond to a closed flow for which the fluid leaving the downstream border of the
computational domain is reinjected at the upstream boundary. The mass is therefore
conserved in the domain so that the space-averaged film thickness remains constant and
is equal to the initial flat-film thickness. In experiments, the fluid accelerates and a film
thinning is observed so that the time average of the thickness decreases downstreams,
whereas the time average of the flow rate is conserved and is equal to its value at inlet, 1/3.
Therefore in order to account for the acceleration of the flow observed in experiments, in
our simulations, the uniform thickness at initial time is set to the mean thickness 〈h〉 < 1
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of the 2D travelling waves at the forcing frequency, which are obtained using Auto97
when a constant averaged flow rate 〈q〉 = 1/3 is enforced, which ensures that the amount
of liquid in our computational domain lying under the corresponding travelling waves is
appropriate. Since the local flow rate varies as the cube of the local film thickness, this
requirement can be crucial in recovering experimental results. The development of 2D
waves undergoing 3D instabilities is simulated by enforcing the initial condition:

h(x, z, 0) = 〈h〉 + Ax cos(2πnxx/Lx) + Az cos(2πnzz/Lz) + Anoiser̃(x, z) , (8.2)

where Ax, Az , Anoise are small amplitudes, nx, nz ∈ N represent the numbers of sinusoidal
waves in each direction, and r̃ is a random function with values in the interval [−1, 1].
The last term of (8.2) accounts for ambient white noise. In the following we take Anoise =
10−3. In most cases, the aspect ratio of the computational domain is set to unity and
Lx = Lz ≡ L. The value of L must be taken large enough to allow complex flow dynamics.
The general form of (8.2) enables us to explore a wide range of experimental results on
3D waves emerging from 2D waves. In the following, we consider 3D modulations of γ1

waves, γ2 waves, and natural waves.

8.1. 3D modulations of γ1 waves

We first consider the transition from 2D γ1 waves to 3D patterns, which corresponds to
the experimental results by Liu et al. (1995). Their well-controlled experiments will also
serve as a benchmark for a systematic evaluation of the accuracy and usefulness of the
different models.

Liu et al. have imposed a spanwise-uniform time periodic forcing at inlet. In order
to mimic their experiments, we choose initial conditions corresponding to sinusoidal 2D
waves plus small white noise (Az = 0 and Anoise � Ax). L is set equal to five times
the wavelength 2π/k of the precursor 2D travelling wave, i.e. nx = 5. The values of
the parameters for the different numerical experiments are indicated in table 1. We first
start by considering flow conditions for an inclination angle β = 4◦ and Kapitza number
Γ = 2340 (sets #1–3 in table 1 and in figure 7 a). Each chosen couple (frequency,
Reynolds number) is indicated by a cross in figure 7(a). Set #1 corresponds to the
region of the plane (f , R) where herringbone patterns were observed experimentally, i.e.
subharmonic instability. Simulations of the complete, regularised and simplified models
agree with both the Floquet analysis and the experimental data by showing the presence
of staggered crests and troughs. Isothickness contours of the wave patterns are shown at
different times in figure 9 for the regularised model: At the final stage (figure 9c), the
film evolves towards a staggered arrangement of smooth and large bumps, and thin and
deep depressions, which agrees qualitatively with the experimental observations.

Using parameter set #2, we next move to the region in figure 7(a) where synchronous
secondary instability has been reported by Liu et al. (1995) whereas the Floquet analysis
predicts a subharmonic instability (compare figure 7a to figure 7b). Time integrations
of the different models, given in figure 10 for the same spanwise deformation energy
Ez , show disagreement: The complete model (panel a) shows a sideband instability,
ϕ � 1, leading to a synchronous pattern while from the simplified model (panel c), one
gets staggered troughs and more deformed crests indicating a subharmonic instability,
ϕ = 1

2 . Solution to the regularised model (figure 10b) corresponds to a combination of
synchronous and staggered modulations, while seeming closer to the complete model’s
solution (and experimental observations) than to that of the simplified model: spanwise
and streamwise wavelengths have values close to each other (four spanwise modulations
for the complete and regularised model, in contrast with three for the simplified one).
This is in line with the fact that, as seen in figure 8(a,b), the secondary instability is
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(a) t=150 (b) t=175 (c) t=195

Figure 9. Snapshots of free surface deformations giving rise to an herringbone pattern, com-
puted for the parameter set #1 (see table 1) with the regularised model at different times.
Isothickness contours are separated by an elevation step of 0.06. The numbers of grid points are
M × N = 128 × 64 and L = 2nxπ/k. Amplitudes of the initial periodic forcing are Ax = 0.1,
Az = 0 and Anoise = 10−3, with nx = 5. Dark and bright zones stand for depressions and
elevations, respectively.

(a) complete, t = 125 (b) regularised, t = 125 (c) simplified, t = 155

Figure 10. Snapshots of free surface deformations computed for parameter set #2 at Ez ≈ 0.05
for the three models. Isothickness contours are separated by a level difference of 0.08. See also
caption of figure 9. The size of the computational domain is 9.8× 9.8 cm. Note that the shading
have been removed for clearness.

not selective for the parameter set #2. On the other hand, as expected from the linear
prediction (figure 8c), the simplified model clearly selects the subharmonic instability,
ending in a staggered pattern (figure 10c). Similar behaviours of the three models (not
shown here) have been also found for parameter set #3.

Parameter set #4 of table 1 corresponds to a more pronounced inclination angle (β =
6.4◦) and thus to a smaller Kapitza number (Γ = 2002). Our simulations indicate that,
if the initial excitation is spanwise uniform (Az = Anoise = 0), the 2D steady state
corresponds to an oscillatory mode instead of a travelling wave. This is illustrated in
figure 11 by plotting in (a) the time evolution of the streamwise deformation energy Ex

and in (b) the wave profiles at two different times corresponding to a maximum (label
‘1’) and a minimum (label ‘2’) of Ex during one oscillating period. Such an oscillatory
mode has been numerically observed by Ramaswamy et al. (1996) who called this regime
quasi-periodic. The direct numerical simulations of the Navier–Stokes equations indicate
that the quasi-periodic regime is widely present in the case of a vertical plane when the
Reynolds number becomes large. This behaviour is generated by the destabilisation of
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Figure 11. (a) Energy of streamwise deformations Ex computed for parameter set #4 as func-
tion of time; (b) corresponding 2D wave profiles. The complete model has been used for com-
putations and Ax = 0.1, Az = 0, Anoise = 0, nx = 5, L = 2nxπ/k for the initial conditions.

(a) complete, t = 345 (b) regularised, t = 305 (c) simplified, t = 295

Figure 12. Free surface deformations computed for the parameter set #4 at Ez ≈ 0.05 for the
three models. Isothickness contours are separated by an elevation step of 0.06. Amplitudes of
the initial forcing are here Ax = 0.2, Az = 0 and Anoise = 10−3.

the existing limit cycle and can be predicted by looking at the maximum growth rate of
Floquet perturbations, the imaginary part of which was also found to be positive.

The wave patterns for the different models are shown in figure 12. We see that both
the complete and the simplified models yield staggered patterns whereas the regularised
model yields a synchronous pattern, in agreement with experimental observations. In
fact, it appears that the onset of the 3D pattern is strongly influenced by the presence of
the 2D oscillatory mode and then by the exchange of energy between this mode and the
3D instability mode. This exchange depends on the initial conditions and in particular
on the amplitude Ax of the initial streamwise modulations. Figure 13 shows 3D wave
patterns computed with the regularised model for two different values of Ax. Significant
qualitative differences can be noted by comparing them to figure 12(b): At low initial
amplitude Ax = 0.1, the final transverse modulations seem to have longer wavelengths
than at larger values of Ax = 0.2 and Ax = 0.3. In addition, crests display out-of-phase
modulations whereas modulations are rather in-phase when the initial amplitude Ax is
increased. Time evolutions of the energies Ex and Ez are displayed in figure 14. When
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(a) regularised, Ax = 0.1 (b) regularised, Ax = 0.3

Figure 13. Free surface deformations computed for the parameter set #4 at Ez ≈ 0.05
(Az = 0 and Anoise = 10−3): (a) t = 300, (b) t = 220.
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Figure 14. Deformation energies computed for parameter set #4 using the regularised model
(6.2) and various values of Ax. Solid and dashed lines correspond to Ex and Ez, respectively.
Figures 13(a), 12(b) and 13(b) correspond to pictures taken at times when Ez crosses the level
0.05.

Ax = 0.1, the system approaches the unstable stationary wave solution and remains
close to it for a long time. Therefore, the Floquet analysis still applies and the obtained
staggered pattern corresponds to the predicted subharmonic instability. This is no longer
the case for larger values of Ax where the modulation of the 2D wave-train occurs prior
to the development of the 3D instability. The observed synchronous pattern is thus the
complex result of two ingredients: the growth of 2D oscillations and the 3D instability.

We have already noticed how pattern formation is sensitive to the initial conditions,
due to the poor selectivity of the secondary instability. In order to mimic the effect of
possible inlet inhomogeneities in our simulations, we have added an x-independent noise
r̃′(z) to the initial condition (8.2), whose amplitude A′

noise represents the inlet roughness.
A realistic estimate of about 1µm roughness gives an amplitude of A′

noise = 0.01 for a
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14.2cm

t=290

t=290

t=245 +

Figure 15. Snapshots of the film free surface obtained using the regularised model (6.2) at
two different times, along with the experimental picture in the centre (Liu et al. 1995, figure
7). Parameters correspond to set #3 in table 1. Ax = 0.2, nx = 5, Az = 0, L = 2nxπ/k,
Anoise = 10−3, an x-independent noise with amplitude A′

noise = 10−2 is added to mimic the
effect of wall roughness. The size of the computational domain is 148 × 148 mm. Isothickness
contours are separated by an elevation step of 0.06. The location of a saddle point in the right
snapshot (see text) is indicated by a cross and two arrows.

typical film thickness of 100µm. Figures 15 and 16 display results obtained with the
regularised model, as compared to those obtained experimentally (Liu et al. 1995, figures
7 and 11). They show the influence of such a perturbation, which effectively bias the
evolution in favour of the synchronous instability. To facilitate comparisons with the
experimental results, numerical snapshots are separated in the vertical direction by the
distance covered by the waves between the two times at which the snapshots have been
taken (roughly 14.2 cm and 5.8 cm in the case of figures 15 and 16 respectively). The
agreement with experiments is now reasonable even though, mostly because of the choice
of periodic boundary conditions, some differences can still be noticed. The spanwise
wavelength selected in the simulation shown in figure 15 seems to be a little smaller than
in the experiment (37 mm in comparison to roughly 46 mm), whereas in the case of
figure 16, the simulation and the experiment give essentially the same answer (28 mm as
compared to 26 mm). However, experiments and simulations share common qualitative
features. Isothickness contours agree well with each other, and strong modulations of
the troughs are observed, whereas the crests remain nearly undeformed, which leads to
the formation of isolated depressions. In particular, as experimentally observed by Liu et

al., our numerical simulations indicate the formation of local saddle points on the wave
pattern corresponding to minima in the spanwise direction and maxima in the streamwise
direction (see the right panel of figure 15 where one of such saddle points is indicated
by a cross). Liu et al. have measured the difference of height between the minima of
the thickness at a trough and the height of the nearby saddle point. They called it
“trough transverse modulation amplitude”, denoted ∆hmin(x). From the measurement of
∆hmin(x) at different locations for the experimental data corresponding to the parameter
set #3, i.e. their figure 7 and our figure 15, they computed a spatial growth rate of



28 B. Scheid, C. Ruyer-Quil and P. Manneville

t=245

5.8cm

t=270

Figure 16. Same caption as for figure 15 with the parameter set #4 (Liu et al. 1995, figure 11).
The size of the computational domain is 118 × 118 mm. Isothickness contours are separated by
an elevation step of 0.08.

approximately 0.11 cm−1. Following a similar procedure, we define ∆hmin(t) as the height
difference between the minimum of the thickness in the entire computational domain
and the closest saddle point at a given time t. From the measurement of ∆hmin(t) in our
simulation, we found a temporal growth rate of approximately 2.6 s−1, which is converted
into a spatial growth rate, 0.125 cm−1, hence of the correct order of magnitude, with the
help of the speed of the corresponding 2D γ1 waves, 20.8 cms−1.

Despite differences between our numerical simulations and experimental conditions,
both the synchronous instability and the herringbone patterns observed by Liu et al.

(1995) were qualitatively recovered with the complete and the regularised models, whereas
the synchronous instability cannot be obtained using the simplified one. This indicates
the necessity to take into account the second-order inertia corrections to reproduce sat-
isfactorily the experimental findings. The regularised model (6.2) therefore seems to be
a good compromise between accuracy and simplicity and will be the only one used from
now to compare numerical simulations with experimental findings.

8.2. 3D modulations of γ2 waves

In this section, we investigate experimental conditions of Park & Nosoko (2003) who
observed 3D wave patterns emerging from 2D waves of γ2-type for films of water on a
vertical wall. Parameter sets corresponding to the different numerical experiments are
given in table 2. Controlling inlet perturbations, Park & Nosoko (2003) have imposed a
spanwise uniform forcing at a given frequency f and periodic modulations in the spanwise
direction by means of regularly spaced needles with period λz,ndl. At R below approxi-
mately 40, regular spanwise forcing of the waves led to low-level spanwise modulations
whereas at R above 40, the waves broke into horseshoe-like solitary waves having curved
fronts and long oblique legs. The existence of stationary horseshoe-like waves have been
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Set R β (deg) Γ f (Hz) λz,ndl (mm) k c 〈h〉 kz

5 20.7 90 3375 15.0 10 0.3461 0.900 0.899 0.699

6 40.8 90 3375 19.1 20 0.3845 0.714 0.912 0.377

7 59.3 90 3375 17 20 0.3126 0.630 0.955 0.393

Table 2. Parameters of the simulations corresponding to experiments on a vertical plane and
with pure water at 25◦C (Park & Nosoko 2003, figure 7). λz,ndl is the spanwise intervals of
the needle array and kz is the corresponding dimensionless wavenumber. The dimensionless
wavenumber k, phase speed c and averaged thickness 〈h〉 of the corresponding 2D γ2 waves are
also given.

(a) t = 27 (b) t = 172

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

PSfrag replacements

h

x/λx
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Figure 17. (a,b) Snapshots of the film free surface at two different times computed with the
regularised model and for set #5 in table 2 (R = 20.7). nx = 3, nz = 6 and L = 2nxπ/k.
The computational domain is 60× 60 mm with 128× 128 grid points. Bright (resp. dark) zones
correspond to elevations (resp. depressions). (c) 2D wave profile of (b).

demonstrated experimentally by Alekseenko et al. (2005). The initial conditions (8.2)
corresponding to the inlet conditions imposed by Park & Nosoko and adapted to our
simulations are taken as: Ax = 0.2, Az = 0.05 and Anoise = 0.

Figure 17 shows snapshots for parameter set #5 with R = 20.7. Initial spanwise
modulations of length λz,ndl = 10 mm (nz = 6) are quickly damped, i.e. Ez → 0, and
the pattern evolves to 2D travelling waves, i.e. Ex → cst, the profile of which is given
in figure 17(c). This corresponds to a γ2 wave with a large hump preceded by capillary
ripples, in accordance with the fact that when the forcing frequency is small, the γ1 slow
waves are not observed. The linear inception region is thus immediately followed by the
formation of fast γ2 waves, that are stable for a while. This is in agreement with the
experimental observations for which the inlet forcing is quickly damped. Park & Nosoko
then observed the downstream growth of another mode leading to spanwise modulated
waves with a wavelength roughly equal to 3 cm. Similar modulated γ2 waves (not shown
here) are recovered by increasing the length of the initial spanwise modulations λz,ndl to
30 mm (nz = 2). They also decay (with Ez → 0) but at a much smaller rate indicating
that the wavelength λz = 3 cm is close (but still below) the cut-off wavelength for
spanwise instability with our regularised model.
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Figure 18. (a) Experimental picture (real size 60 × 80 mm) for set #6 (R = 40.8) (Park &
Nosoko 2003, figure 7c); (b) Simulations with nx = 3, nz = 3 and L = 2nxπ/k.The domain size
is 60 × 60 mm with 256 × 256 grid points. Each of the six wave fronts has been obtained at a
different dimensionless time, by interval of 22.

Simulation results for a larger Reynolds number R = 40.8 are presented in figure 18
(parameter set #6) and compared to experimental findings (Park & Nosoko 2003, fig-
ure 7c). Like for R = 20.7, we first observe sinusoidal spanwise modulations of the 2D
waves. However, they rapidly evolve into rugged modulations, made of nearly flat backs
and rounded fronts. To facilitate qualitative comparisons to the spatial evolution ob-
served in experiments, snapshots of only a third of the numerical domain, corresponding
to one streamwise wavelength, are displayed in figure 18 at increasing times. The interval
of time separating each two snapshots roughly corresponds to the travelling of the fronts
over a distance equal to one wavelength. Despite our use of periodic boundary condi-
tions, the resemblance with the experimental findings (Park & Nosoko 2003, figure 7c)
is convincing. For instance the chequerboard interference pattern of the capillary waves
preceding the flat zones are recovered.

Above R ≈ 40, Park & Nosoko (2003) observed a breaking of the modulated fronts
leading to horseshoe-like waves. Simulation results for R = 59.3 are presented in figure 19
(parameter set #7) and compared to the experimental findings (Park & Nosoko 2003,
figure 7d). Due to computational limitations, the computational domain was limited to
only one and two wavelengths in the streamwise and spanwise directions respectively
(nx = 1 and nz = 2). As compared to R = 40.8, the rugged modulations develop faster
and do not saturate. Instead, the bulges of the wave front continuously expand into
horseshoe-shapes, reducing the span of the flat parts at the back. As time proceeds, the
legs of the horseshoes extend and split off into dimples, in qualitative agreement with
experimental observations. The growth of the spanwise perturbations in our simulation
is however faster than in the experiment.

8.3. 3D natural waves

In this section, we study the formation of noise-driven 3D waves in the absence of periodic
forcing. To match with the experiments by Alekseenko et al. (1994), the initial conditions
(8.2) need to be chosen with white noise of amplitude Anoise = 10−3 and Ax = Az = 0.
Parameter values for the different numerical experiments are given in table 3. Snapshots
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Figure 19. (a) Experimental picture (real size 60 × 100 mm) for set #7 (R = 59.3) (Park
& Nosoko 2003, figure 7d); (b) Snapshots of the simulated free surface. The domain size is
40 × 25 mm with 256 × 256 grid points. Each of the five wave fronts has been obtained at
increasing dimensionless times, by interval of 30.

Set R β (deg) Γ λx (mm) k c 〈h〉

8 8 75 1106 40 0.15 1.322 0.906

9 16 75 1106 30 0.21 1.062 0.876

10 45 75 1106 25 0.28 0.749 0.904

Table 3. Parameters of the simulations corresponding to experiments on an inclined plane
and with a 16% water-ethanol solution at 25◦C (ρ = 972 kg m−3, ν = 1.55 × 10−6 m2 s−1

and σ = 40.8 × 10−3 N m−1) (Alekseenko et al. 1994, figure 1.6). The 2D wave characteristics
k, c and 〈h〉 have been computed from the wavelength λx, which has been estimated by the
average streamwise separation of the 3D waves observed in the experimental pictures. See also
the caption of table 1.

of the free surface deformation are reported in figure 21 where the three columns corre-
spond to different Reynolds numbers (sets #8-10 of table 3). The experimental pictures
obtained by Alekseenko et al. (1994) are shown for reference in figure 20. Each row in
figure 21 corresponds to a particular transient regime: first, mostly 2D waves; second,
coalescence processes, and finally 3D solitary waves. Both the dimensionless time t and
the approximate location of the numerical domain on the experimental plane are given
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(a) R = 8 (b) R = 16 (c) R = 45

Figure 20. Wave patterns obtained experimentally by Alekseenko et al. (1994) (see table 3).

in figure 21. The distance being again estimated from the phase speed c of the 2D waves
(see table 3).

The large amplitude waves travel faster, catch up the preceding slower ones and finally
absorb them, which explains the coarsening process leading to an increase of the size
of the flat zones that separate the waves. The development of capillary ripples in front
of the humps is observed and the waves therefore resemble to the 2D γ2 waves. Panels
(g,j) and (h,k) of figure 21 share features similar to the experimental wave patterns. (For
comparison, one should keep in mind that the grey levels represent surface elevation
in simulations but surface slope in experiments.) The unsteady experimental pattern
is characterised by interacting quasi-steady 3D solitary waves separated by portions of
constant thickness of length 10 to 50 cm. For R = 8, the average distance between the
solitary waves tends to saturate for t > 890, which indicates either that solitary waves
have reached a fully developed regime, or that the streamwise periodic conditions are
felt. For R = 16, no fully-developed regime has been reached at the end of the simulation
that was run for 1500 time units. In that case, the final stage corresponds to interacting
oblique fronts rather than 3D horseshoe-like waves. For R = 45, the 3D waves tend to
form localised structures rather than extended wave fronts as observed for smaller values
of R. This is in agreement with the results of Alekseenko et al. (1994) and Park & Nosoko
(2003) who observed V-shape or horseshoe-like solitary waves with a sharp curved front
and long backwards tails under similar conditions (see panels i and l).

9. Concluding remarks

In most cases, asymptotic expansions are poorly converging and the Benney expansion
is no exception to this rule (Oron & Gottlieb 2004). If an improvement of the accuracy is
achieved by increasing the order of the approximation, this is at the cost of an increased
complexity and a reduction of the range of parameters for which comparisons with DNS
and experiments are improved. Padé approximant techniques are well known for their
ability to extend the radius of convergence of algebraic series.

In the case of 2D flows, Ooshida’s application of this idea to the Benney expansion
remedies the unphysical occurrence of finite-time blow-up of solutions to (3.3) but a
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set #8 (R = 8) set #9 (R = 16) set #10 (R = 45)

(a) t=105 – l≈13 cm (b) t=120 – l≈13 cm (c) t=185 – l≈16 cm

(d) t=280 – l≈35 cm (e) t=200 – l≈21 cm (f) t=310 – l≈26 cm

(g) t=480 – l≈59 cm (h) t=370 – l≈40 cm (i) t=375 – l≈32 cm

(j) t=890 – l≈110 cm (k) t=845 – l≈91 cm (l) t=575 – l≈51 cm

Figure 21. Simulations of natural (noise-driven) 3D wave patterns corresponding to the exper-
iments by Alekseenko et al. (1994) (see figure 20). The computational domain is 100× 100 mm2

with 256 × 256 grid points for set #8 and #9 and 512 × 256 for set #10 except for panel (i,l)
where it corresponds to 50×50 mm2 and 256×256 grid points: the obtained snapshot is repeated
four times. l is the estimated distance from the inlet. The bright (dark) zones correspond to
elevations (depressions).
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quantitative agreement cannot be achieved with experiments for δ of order unity or larger.
We have shown elsewhere that a weighted residual procedure based on a polynomial
expansion of the velocity field lead to a two-equation model at order ε in terms of the
film thickness h and the flow rate q (Ruyer-Quil & Manneville 2000). Augmenting the
order of the approximation to ε2 again leads to a dramatic increase of the complexity
yielding a four-equation model in the 2D case and seven equations in the 3D case. A way
out can be found by dropping second-order inertial terms while retaining streamwise
viscous diffusion effects, thus leading to the simplified model (3.1,4.1). However, this
simplification is done at the cost of a lowering of the order of the approximation. Based
on the Padé approximant approach, the first part of this study has been devoted to the
derivation of a two-equation model consistent at order ε2 aiming at an agreement with
DNS and experiments in the largest possible range of parameters.

Focusing on the treatment of inertia terms, our algebraic regularisation procedure
enabled us to obtain a two-equation model (3.1,4.15) which is fully consistent with the
Benney expansion up to second-order. The approach developed here remedies the lack
of systematism of the derivations presented in Ruyer-Quil et al. (2005) and Scheid et al.

(2005a) where ad-hoc arguments were invoked to treat the case of a film uniformly heated
from below. The use of a kind of algebraic preconditioner makes its application much
simpler than Ooshida’s approach based on differential operators. Our hope is that this
Padé-like strategy might be useful for different related problems in lubrication theory for
which a careful treatment of inertial effects are of importance, e.g. film flows where mass
and heat transfer are involved, films down fibres, and roll waves (Balmforth & Liu 2004).

Computations of the 2D solitary wave branches of solutions and 2D periodic travelling
waves agree quantitatively with laboratory and DNS experiments for the whole range
of parameters for which 2D wavy motion is observed. In particular, our models are able
to capture the near-wall counterflow observed in the DNS by Malamataris et al. (2002)
and in the experiments by Tihon et al. (2003), an effect that might be important when
transfer of heat or mass from the substrate are considered.

We have extended our models to include the spanwise dependence in order to study
the transition from 2D to 3D flows. A systematic Floquet analysis of the stability of the
2D slow γ1 waves has been performed, followed by numerical simulations using periodic
boundary conditions. Our focus is the description of the 3D wave patterns observed
experimentally with three main objectives: (i) use experimental results as benchmarks for
a validation of our models; (ii) reproduce the synchronous and subharmonic transitions
from γ1 waves to 3D patterns found by Liu et al. (1995); (iii) recover the wave dynamics
observed by Park & Nosoko (2003) in the case of well-controlled spanwise perturbations
of fast γ2 waves, and by Alekseenko et al. (1994) in the case of noise-driven instabilities.

Floquet analysis shows that the secondary 3D instability is not selective, since the
maximum growth rate remains nearly unchanged over the whole range 0 ≤ ϕ ≤ 1/2 of
the detuning parameter. This property makes the 3D instability strongly dependent on
the initial conditions, and thus prevents one to relate univocally the results of Floquet
analysis to experimental findings. By contrast, numerical simulations have shown good
agreement with experimental results by Liu et al. (1995), provided that initial conditions
are appropriately tuned. The widespread observation of the synchronous instability in ex-
periments could then be attributed to the presence of spanwise non-uniformities at inlet,
favouring in-phase modulations of the wave fronts. In some cases, the three-dimensional
patterns emerge from a two-dimensional oscillatory mode rather than from saturated
travelling waves, as also observed in direct numerical simulations by Ramaswamy et al.

(1996). The competition between the growing 2D modulation and the secondary 3D in-
stability makes the evolution of the film more sensitive to initial conditions. Complex 3D
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dynamics deep in the nonlinear regime, in particular isolated synchronous depressions
(figure 16), rugged-modulated waves (figure 18) as well as horseshoe-like 3D solitary waves
(figures 19 and 21i, l) and oblique solitary waves (figure 21k) found in our simulations
were observed in experiments.

The application of a systematic strategy to the problem of film flows is shown here
to lead to systems of equations of reduced dimensionality that capture the physical
mechanisms quite faithfully, helping us to enlighten the observed dynamics by isolating
the important physical effects. Having reliable low-dimensional models at our disposal
allows us to attack many questions still open for plain film flows over inclined planes,
but also in more difficult cases, for example when heat or mass transfer are involved.

The authors wish to express their gratitude to N. A. Malamataris, M. Vlachogiannis
and V. Bontozoglou for providing them with the wave-profile corresponding to the full
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Orsay. This study was partly funded by a grant from both French and Belgium research
agencies (CNRS/CGRI-FNRS cooperation agreement). B. S. acknowledges funding from
the European Commission through the Marie-Curie Training Centre.

Appendix A. Reconstruction of the velocity profile

Expressions of the polynomials g0, g1 and g2 used to expand the velocity field read
(Ruyer-Quil & Manneville 2000):

g0(ȳ) = ȳ − 1
2 ȳ2 ,

g1(ȳ) = ȳ − 17
6 ȳ2 + 7

3 ȳ3 − 7
12 ȳ4 ,

g2(ȳ) = ȳ − 13
2 ȳ2 + 57

4 ȳ3 − 111
8 ȳ4 + 99

16 ȳ5 − 33
32 ȳ6 .

Streamlines and velocity profiles displayed in figure 4 were reconstructed from the solu-
tions to the complete and the regularised models using the projection of the streamwise
velocity on g0 = ȳ − 1

2 ȳ2, g1 and g2:

u = 3
q − rx − sx

h
g0

(y

h

)

+ 45rx g1

(y

h

)

+ 210sx g2

(y

h

)

. (A 1)

In the case of the regularised model (3.1,4.15), expressions of the corrections rx and sx

were given by their first-order approximation (4.3).

Appendix B. 3D regularised model

∂th = −∂xqx − ∂zqz . (B 1a)
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Appendix C. Complete second-order model

Writing εx = 1 and εz = 0, the complete second-order model consists in the evolution
equations for qx, rx and sx
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δ ∂tsx = εx
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along with a symmetrical set of equations for qz, rz and sz, obtained from equations
(C 1) through the exchanges {x ↔ z}. The set of equations is next completed by the
mass conservation ∂th = −∂xqx − ∂zqz. The complete 2D model is obtained by setting
∂z ≡ 0 and qz = rz = sz ≡ 0 in these equations.
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